pohyb tělesa, posuvný a rotační pohyb Dynamika I, 5. přednáška Obsah přednášky : pohyb tělesa, posuvný a rotační pohyb Doba studia : asi 1,5 hodiny Cíl přednášky : seznámit studenty se základními typy pohybu tělesa, s kinematikou a dynamikou posuvného a rotačního pohybu
Pohyb tělesa rovinný pohyb : Všechny body tělesa Dynamika I, 5. přednáška Pohyb tělesa posuvný pohyb rovinný pohyb : Všechny body tělesa se pohybují v navzájem rovnoběžných rovinách. rotační pohyb obecný rovinný pohyb posuvný pohyb prostorový pohyb sférický pohyb šroubový pohyb obecný prostorový pohyb
Pohyb tělesa Žádná přímka tělesa nemění svůj směr. Dynamika I, 5. přednáška Pohyb tělesa posuvný pohyb Žádná přímka tělesa nemění svůj směr.
Pohyb tělesa Jedna přímka tělesa nemění svou polohu. Dynamika I, 5. přednáška Pohyb tělesa Jedna přímka tělesa nemění svou polohu. rotační pohyb
Dynamika I, 5. přednáška Pohyb tělesa obecný rovinný pohyb
Pohyb tělesa Žádná přímka tělesa nemění svůj směr. Dynamika I, 5. přednáška Pohyb tělesa Žádná přímka tělesa nemění svůj směr. posuvný pohyb
Pohyb tělesa Jeden bod tělesa nemění svou polohu. Dynamika I, 5. přednáška Pohyb tělesa Jeden bod tělesa nemění svou polohu. sférický pohyb
Pohyb tělesa Jeden bod tělesa nemění svou polohu. Dynamika I, 5. přednáška Pohyb tělesa Jeden bod tělesa nemění svou polohu. sférický pohyb
Pohyb tělesa Těleso rotuje okolo osy Dynamika I, 5. přednáška Pohyb tělesa Těleso rotuje okolo osy a současně se posouvá ve směru této osy. šroubový pohyb
Dynamika I, 5. přednáška Pohyb tělesa obecný prostorový pohyb
Pohyb tělesa rovinný pohyb je jeden z těchto 6 typů pohybu. Dynamika I, 5. přednáška Pohyb tělesa posuvný pohyb rotační pohyb rovinný pohyb obecný rovinný pohyb je jeden z těchto 6 typů pohybu. Jakýkoliv pohyb tělesa posuvný pohyb sférický pohyb prostorový pohyb šroubový pohyb obecný prostorový pohyb
Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti Dynamika I, 5. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti x,y,z - pevný (nehybný) souřadný systém; počátek P x,h,z - tělesový souřadný systém - pevně spojený s tělesem; počátek W x//x, h//y, z//z A - běžný bod tělesa
Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti Dynamika I, 5. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti rA - polohový vektor bodu A vůči xyz rW - polohový vektor bodu W vůči xyz, poloha tělesa v prostoru rAW - polohový vektor bodu A vůči xhz, poloha bodu A uvnitř tělesa
Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti Dynamika I, 5. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti derivace podle času Polohový vektor rAW má velikost a směr. Velikost je konstantní s ohledem na nedeformovatelnost tělesa - těleso se nemůže protáhnout, platí vždy (pro absolutně tuhé těleso). Směr je konstantní s ohledem na definici posuvného pohybu - platí pouze pro posuvný pohyb.
Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti Dynamika I, 5. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti derivace podle času derivace podle času Všechny body se pohybují po stejné trajektorii, stejnou rychlostí, se stejným zrychlením.
Žádná přímka tělesa nemění svůj směr. Dynamika I, 5. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. Pohyb posuvný přímočarý. Všechny body se pohybují po stejné trajektorii, stejnou rychlostí, se stejným zrychlením.
Žádná přímka tělesa nemění svůj směr. Dynamika I, 5. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. Pohyb posuvný kruhový. Všechny body se pohybují po stejné trajektorii, stejnou rychlostí, se stejným zrychlením.
Žádná přímka tělesa nemění svůj směr. Dynamika I, 5. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. Pohyb posuvný cykloidní. Všechny body se pohybují po stejné trajektorii, stejnou rychlostí, se stejným zrychlením.
Posuvný pohyb - dynamika. Dynamika I, 5. přednáška Posuvný pohyb - dynamika. Pohybová rovnice posuvného pohybu tělesa je shodná s pohybovou rovnicí hmotného bodu. Všechny body tělesa mají stejné zrychlení.
Posuvný pohyb - dynamika. Dynamika I, 5. přednáška Posuvný pohyb - dynamika. d’Alembertův princip má stejnou podobu jako u hmotného bodu. D dD dm dm dD dm a dm dG T T a dG a dm dD dm dG dm dm a dD dG G Vzniká otázka kde leží působiště d’Alembertovy síly. Tíhová síla G je výslednicí nekonečně mnoha elementárních tíhových sil dG. D’Alembertova síla D je výslednicí nekonečně mnoha elementárních d’Alembertových sil dD. Elementární tíhová síla dG=dm·g. Elementární d’Alembertova síla dD=dm·a. Gravitační zrychlení g má ve všech bodech stejnou velikost i směr. Zrychlení a má ve všech bodech stejnou velikost i směr.
D’Alembertova síla D působí v těžišti. Dynamika I, 5. přednáška Posuvný pohyb - dynamika. d’Alembertův princip má stejnou podobu jako u hmotného bodu. D dD dm dm dD dm a dm dG T T a dG a dm dD dm dG dm dm a dD dG G Vzniká otázka kde leží působiště d’Alembertovy síly. Z analogie mezi rozložením elementárních tíhových sil dG a elementárních d’Alembertových sil dD vyplývá : D’Alembertova síla D působí v těžišti.
Posuvný pohyb - dynamika. Dynamika I, 5. přednáška Posuvný pohyb - dynamika. Za účelem sestavení (a následného řešení) pohybové rovnice lze těleso nahradit hmotným bodem ... kterýmkoliv - všechny body se pohybují po stejné trajektorii stejnou rychlostí a se stejným zrychlením. pohybová rovnice
Posuvný pohyb - dynamika. Dynamika I, 5. přednáška Posuvný pohyb - dynamika. d’Alembertův princip Do těžiště zavedeme d’Alembertovu sílu - tečnou a normálovou složku. Ze tří rovnic rovnováhy vyřešíme : 1) pohybovou rovnici, 2) reakční síly.
Posuvný pohyb - dynamika. Dynamika I, 5. přednáška Posuvný pohyb - dynamika. Pro sestavení (a následné řešení) pohybové rovnice lze hmotu soustředit do jednoho bodu a řešit pohyb hmotného bodu. Pro řešení sil (nejčastěji reakcí) je třeba počítat s rozměry tělesa a uvažovat soustavu sil s různým působištěm. D’Alembertovu sílu pak zavádíme do těžiště.
Jedna přímka tělesa nemění svou polohu (osa rotace). Dynamika I, 5. přednáška Rotační pohyb. Jedna přímka tělesa nemění svou polohu (osa rotace). každý bod se pohybuje po kružnici o poloměru R 1 stupeň volnosti úhel natočení úhlová rychlost úhlové zrychlení r polohový vektor v obvodová rychlost at tečné zrychlení an normálové zrychlení
Rotační pohyb - dynamika. Dynamika I, 5. přednáška Rotační pohyb - dynamika. V dynamice nevystačíme s pohybovou rovnicí hmotného bodu ! d’Alembertův princip nahrazení silové soustavy Z tělesa vybereme hmotový element dm. Tomu přiřadíme tečné a normálové zrychlení at a an. Zavedeme elementární d’Alembertovy síly dDt a dDn (tečnou a normálovou). Provedeme ekvivalentní nahrazení silové soustavy nekonečně mnoha elementárních d’Alembertových sil jednou silou a momentem. moment setrvačnosti [kg·m2]
Rotační pohyb - dynamika. Dynamika I, 5. přednáška Rotační pohyb - dynamika. d’Alembertův princip výsledný silový účinek (působiště ve středu rotace !) výsledný momentový účinek moment setrvačnosti [kg·m2] rT - vzdálenost těžiště od středu rotace
Rotační pohyb - dynamika. Dynamika I, 5. přednáška Rotační pohyb - dynamika. akční síly (zatížení) d’Alembertův princip doplňkové účinky reakce řešení reakcí z rovnic rovnováhy včetně doplňkových sil ! neobsahuje reakce ani doplňkové síly doplňková (d’Alembertova) síla - tečná a normálová složka pohybová rovnice doplňkový moment rT - vzdálenost těžiště od středu rotace
SMSi - součet momentů vnějších sil Dynamika I, 5. přednáška Rotační pohyb - dynamika. akční síly (zatížení) pohybová rovnice IS - moment setrvačnosti [kg·m2] e - úhlové zrychlení [rad/s2] SMSi - součet momentů vnějších sil ke středu rotace [N·m]
Rotační pohyb - dynamika. Dynamika I, 5. přednáška Rotační pohyb - dynamika. kinetická energie Z tělesa vybereme hmotový element dm. Tomu přiřadíme rychlost v a kinetickou energii dEK. Kinetickou energii tělesa určíme integrováním přes celé těleso.
Z porovnáním kinematiky a dynamiky posuvného a rotačního pohybu analogie mezi posuvným a rotačním pohybem Dynamika I, 5. přednáška posuvný pohyb rotační pohyb Z porovnáním kinematiky a dynamiky posuvného a rotačního pohybu vyplývá analogie (podobnost) mezi oběma pohyby. Tato analogie spočívá v tom, že jednotlivým fyzikálním veličinám, vztahujícím se k posuvnému pohybu, odpovídají jiné veličiny, vztahující se k rotačnímu pohybu. Vztahy mezi nimi pak jsou shodné. Jestliže ve vztazích, týkajících se posuvného pohybu, nahradíme jedny veličiny druhými, dostaneme analogické vztahy, týkající se rotačního pohybu.
příklad - rovnoměrně zrychlený pohyb analogie mezi posuvným a rotačním pohybem Dynamika I, 5. přednáška posuvný pohyb rotační pohyb dráha s, x, ... [m, mm] ~ úhel f [rad, °] rychlost v [m/s] ~ úhlová rychlost w [rad/s] zrychlení a [m/s2] ~ úhlové zrychlení e [rad/s2] příklad - rovnoměrně zrychlený pohyb ~ ~
posuvný pohyb rotační pohyb ~ ~ ~ ~ analogie mezi posuvným a rotačním pohybem Dynamika I, 5. přednáška posuvný pohyb rotační pohyb síla F, G, ... [N] ~ moment síly M [N·m] hmotnost m [kg] ~ moment setrvačnosti I [kg·m2] pohybová rovnice pohybová rovnice ~ doplňková síla doplňkový moment ~
posuvný pohyb rotační pohyb ~ ~ ~ ~ ~ ~ analogie mezi posuvným a rotačním pohybem Dynamika I, 5. přednáška posuvný pohyb rotační pohyb hybnost hmoty ~ moment hybnosti [kg·m/s] [kg·m2/s] impuls síly ~ impuls momentu [N·s] [N·m·s] změna hybnosti ~ změna momentu hybnosti kinetická energie ~ kinetická energie [J] [J] práce [N·m] ~ práce [N·m] výkon [W] ~ výkon [W] změna kinetická energie [J ~ N·m]
geometrie hmot moment setrvačnosti Dynamika I, 5. přednáška tenká obruč r = konst
geometrie hmot moment setrvačnosti Dynamika I, 5. přednáška prizmatická tyč rotující okolo osy, procházející koncem tyče
geometrie hmot moment setrvačnosti Dynamika I, 5. přednáška prizmatická tyč rotující okolo osy, procházející středem tyče
geometrie hmot moment setrvačnosti Dynamika I, 5. přednáška válec rotující okolo své osy
geometrie hmot moment setrvačnosti k posunuté ose Steinerova věta Dynamika I, 5. přednáška geometrie hmot moment setrvačnosti k posunuté ose Steinerova věta
geometrie hmot z y r x m m b r a m r m m a m b r a Dynamika I, 5. přednáška geometrie hmot tenká kruhová deska tenká obdélníková deska z y r x m m koule b r a m válec kužel jehlan r m m a m b r a
Dynamika I, 5. přednáška geometrie hmot firemní literatura
Dynamika I, 5. přednáška geometrie hmot firemní literatura
geometrie hmot Dynamika I, 5. přednáška 3D CAD modelování PRINT MASS PROPERTIES ASSOCIATED WITH THE CURRENTLY SELECTED VOLUMES TOTAL NUMBER OF VOLUMES SELECTED = 1 (OUT OF 1 DEFINED) *********************************************** SUMMATION OF ALL SELECTED VOLUMES TOTAL VOLUME = 0.11537E+08 TOTAL MASS = 0.92296E-01 CENTER OF MASS: XC=-0.14674E-03 YC= 0.0000 ZC= 0.0000 *** MOMENTS OF INERTIA *** ABOUT ORIGIN ABOUT CENTER OF MASS PRINCIPAL IXX = 1752.3 1752.3 1752.3 IYY = 1752.3 1752.3 1752.3 IZZ = 3392.2 3392.2 3392.2 IXY = 0.55354E-03 0.55354E-03 IYZ = 0.46905E-04 0.46905E-04 IZX = -0.62350E-04 -0.62350E-04 PRINCIPAL ORIENTATION VECTORS (X,Y,Z): 0.993 -0.116 0.000 0.116 0.993 0.000 0.000 0.000 1.000 (THXY= -6.635 THYZ= 0.000 THZX= 0.000)