Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Povrch hranolu S = 2.S p + S pl SpSpSpSp S pl S pl = o p.v = obsah 2 podstav + obsah pláště S p...... obsah podstavy S pl...... obsah pláště (obvod podstavy.

Podobné prezentace


Prezentace na téma: "Povrch hranolu S = 2.S p + S pl SpSpSpSp S pl S pl = o p.v = obsah 2 podstav + obsah pláště S p...... obsah podstavy S pl...... obsah pláště (obvod podstavy."— Transkript prezentace:

1

2 Povrch hranolu S = 2.S p + S pl SpSpSpSp S pl S pl = o p.v = obsah 2 podstav + obsah pláště S p obsah podstavy S pl obsah pláště (obvod podstavy vynásobíme výškou hranolu) SpSpSpSp SpSpSpSp S pl SpSpSpSp SpSpSpSp SpSpSpSp SpSpSpSp SpSpSpSp SpSpSpSp SpSpSpSp SpSpSpSp

3 Vypočti povrch trojbokého hranolu s podstavou pravoúhlý trojúhelník o rozměrech a=3 cm, b=4 cm a c=5 cm. Výška tělesa je 6 cm. v=6 cm S = 2.S p + S pl S pl = o p.v S p = a.b:2 c=5 cm a=3 cm b=4 cm a=3 b=4 c=5 v=6 podstava plášť S pl Povrch trojbokého hranolu je 84 cm 2. S pl = ( 3+4+5).6 S pl =12.6 S pl = 72 cm 2 S p = 3.4:2 S p = 6 cm 2 S = S = 84 cm 2 S pl = (a+b+c).v SpSpSpSp SpSpSpSp Př.:

4 Vypočti povrch čtyřbokého hranolu s podstavou lichoběžník (základna a=2,5 cm a c=1 cm, ramena b=d=1,5 cm a výška v a =1,4 cm). Výška tělesa je 2,6 cm. S = 2.S p + S pl a=2,5 cm S = 2.2, ,9 S = 4,9 + 16,9 S = 21,8 cm 2 Povrch hranolu je 21,8 cm 2. c=1 cm b=1,5 cm d=1,5 cm v a =1,4 cm podstava v=2,6 a=2,5 b=1,5d=1,5c=1 S pl = (a+b+c+d).v plášť Sp = (a+c).v a : 2 S pl = o p.v S pl = ( 2,5+1,5+1+1,5).2,6 S pl =6,5.2,6 S pl = 16,9 cm 2 S p = (2,5+1).1,4:2 S p = 4,9:2 Sp= 2,45 cm 2 Př.: v=2,6 cm podstava

5 Př.: Ptačí budka má tvar kolmého čtyřbokého hranolu s podstavou pravoúhlého lichoběžníku. Vypočítej povrch. Rozměry jsou uvedené na obrázku. S = 2.S p + S pl a=46 cm S = S = S = 5064 cm 2 Povrch budky je 50,64 dm 2. S p = (a+c).v a : 2 S pl = o p.v S pl = ( ).24 S pl = S pl = cm 2 S p = (46+34).24:2 S p = 80.24:2 Sp= 1920:2 Sp= 960 cm 2 b=27 cm c=34 cm d=v=24 cm d=24 cm

6 Slovní úlohy na procvičení 1.Vypočítej povrch hranolu, který má výšku 21 cm a jehož podstavou je kosočtverec s délkou strany 16 cm a výškou 8 cm. 2.Hranol má výšku 9 cm, jeho podstavou je rovnoramenný trojúhelník se základnou c = 16 cm, v c = 6 cm a délkou ramen a =b = 10 cm. Vypočti povrch hranolu. 3.Vypočítej povrch hranolu, který má výšku 21 cm a jehož podstavou je rovnoramenný lichoběžník s délkami základen 25 cm a 13 cm, délkou ramene 10 cm a výškou 8 cm. S = 1600 cm 2 S p = 16.6:2 S p = 48 cm 2 S pl = ( ).9 S pl =324 cm 2 S = S = 420 cm 2 S p = (25+13).8:2 S p = 152 cm 2 S pl = ( ).21 S pl =1218 cm 2 S = S = 1522 cm 2 řešení

7 Vypočítej povrch hranolu, který má výšku 21 cm a jehož podstavou je kosočtverec s délkou strany 16 cm a výškou 8 cm. v a =8 cm a=16 cm v=21 cm S = 2.S p + S pl S pl = o p.v S p = a.v a Povrch hranolu je cm 2. S pl = S pl =1 344 cm 2 S p = 16.8 S p = 128 cm 2 S = S = 256 cm 2 S = 1600 cm 2 S pl = 4.a.v zpět 1.

8 Objem hranolu V = S p. v SpSpSpSp SpSpSpSp SpSpSpSp SpSpSpSp vv v v v v v.... výška (délka boční hrany) - obsah podstavy vynásobíme výškou hranolu S p.... obsah podstavy SpSpSpSp SpSpSpSp

9 Vypočti objem trojbokého hranolu s tělesovou výškou v = 10 cm a s podstavou tvaru trojúhelníku se stranou a = 7 cm a příslušnou výškou v a = 4,6 cm. 72/1 v=10 cm v a =4,6 cm a=7 cm V = 7.2,3. 10 V = 161 cm 3 V = S p. v V =.v V =. 10 Objem trojbokého hranolu je 161 cm 3.

10 Kůň potřebuje za rok 42 q sena. K jeho uskladnění je potřeba asi 80 m 3 prostoru. Vešlo by se seno na půdu pod sedlovou střechou, která je široká 5 m a od podlahy k hřebenu měří 4 m. Domek je dlouhý 15 m. v=15 m v a =4 m a=5 m V = V = 150 m 3 V = S p. v V =.v V =.15 Na půdu se vejde seno pro koně, protože objem půdy je 150 m 3.

11 Kolik litrů vody se vejde do nádrže na dešťovou vodu znázorněnou na obrázku? 80 cm 60 cm 1,5 m 50 cm PS 56/5 V =. 15 V = V = 525 dm 3 V = 525 l Do nádrže se vejde 525 litrů vody. V =. v V = S p. v

12 Slovní úlohy na procvičení 1.Vypočítej objem hranolu, který má výšku 2 dm a jehož podstavou je lichoběžník s délkami základen 2,3 m a 1,7 m a výškou 0,8 m. 2.Hranol má výšku 4 dm, jeho podstavou je rovnoběžník s délkou strany 30 cm a výškou k této straně 20 cm. Vypočti objem hranolu. 3.Přes zaplavovanou oblast povede cesta po náspu. Násep bude dlouhý 1,5 km a bude mít v příčném řezu tvar rovno-ramenného lichoběžníku s délkami základen 12 m a 8 m a výškou 2 m. Vypočítej objem materiálu potřebného ke stavbě náspu. V = (2,3+1,7).0,8:2.0,2 V = 1,6.0,2 V =0,32 m 3 = 320 dm 3 V = 0,32 m 3 = 320 dm 3 V = V =24 dm 3 V = 24 dm 3 V = (12+8).2: V = V = m 3 V = m 3 řešení -1.příklad řešení -2.příklad řešení -3.příklad

13 Vypočítej povrch (v dm 2 ) a objem (v litrech) pravidelného čtyřbokého hranolu s tělesovou výškou v = 12 cm a s podstavou tvaru kosočtverce s délkou strany a = 10 cm a výškou k ní příslušnou v a = 9,4 cm. v a =9,4 cm a=10 cm v=12 cm 73/3 V = 1128 cm 3 1,128 dm 3 = 1,128 dm 3 V = a.v a.v V = 10.9,4.12 S = 2.S p + S pl S pl = o p.v S p = a.v a Povrch hranolu je 6,68 dm 2 a objem 1,128 litrů. S pl = S pl =480 cm 2 S p = 10.9,4 S p = 94 cm 2 S = S = 668 cm 2 S = 6,68 dm 2 S pl = 4.a.v

14 Kolmé hranoly - povrch a objem Matematika – 7. ročník Základní škola Jakuba Jana Ryby Rožmitál pod Třemšínem Efektivní výuka pro rozvoj potenciálu žáka projekt v rámci Operačního programu VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST Použitý materiál:


Stáhnout ppt "Povrch hranolu S = 2.S p + S pl SpSpSpSp S pl S pl = o p.v = obsah 2 podstav + obsah pláště S p...... obsah podstavy S pl...... obsah pláště (obvod podstavy."

Podobné prezentace


Reklamy Google