Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Podobné prezentace


Prezentace na téma: "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."— Transkript prezentace:

1 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Úměrnosti Výpočty přímé a nepřímé úměrnosti.

2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Poměr - opakování Pojem poměr nás provází celým životem a setkáváme se s ním prakticky každodenně. Vzpomeňme jen na pár ukázkách některé případy, v nichž se v běžném životě s poměrem (pojmem poměr, vyjádřením poměru) setkáváme. Tak například poměr ředění sirupů, postřiků, čisticích prostředků, oleje apod. Obrázky: vlastní foto Uveď další příklady užití poměru. Např. z oblasti sportu, …

3 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Poměr - opakování Poměr porovnávaných údajů a,b zapisujeme a : b a čteme a ku b. 3:2 9:13 15:13 1:3 Poměr a : b můžeme zapsat ve tvaru zlomku: Číslo a>0 nazýváme první člen poměru. Číslo b>0 nazýváme druhý člen poměru.

4 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Užití poměru 3:2 - změna v daném poměru Čím se oba zápisy liší, kromě úvodní zadané hodnoty, která byla v obou příkladech jiná? V prvním příkladu jsme v daném poměru číslo zvětšovali, násobili jsme zadanou hodnotu poměrem zapsaným do zlomku tak, aby byl větší než jedna, tzn. čitatel byl větší než jmenovatel. Ve druhém příkladu jsme sice opět násobili zadanou hodnotu poměrem zapsaným do zlomku, ale tentokrát tak, aby byl menší než jedna, tzn. čitatel byl menší než jmenovatel. Výsledkem je pak zmenšení daného čísla v daném poměru. Z uvedeného pro nás tedy vyplývá závěr, že pokud násobíme dané číslo číslem větším než jedna, dané číslo zvětšujeme, a naopak pokud násobíme dané číslo číslem menším než jedna, pak dané číslo zmenšujeme!

5 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Zvětšování čísla v daném poměru Zvětšit číslo v daném poměru znamená vynásobit toto číslo zlomkem vytvořeným z daného poměru tak, aby byl větší než jedna. To znamená v čitateli větší část poměru a ve jmenovateli část menší. Příklad: Zvětšete číslo 24 v poměru 4: Zvětšit číslo 24 v poměru 4:3 tedy znamená vynásobit číslo 24 zlomkem 4/3, tj. určit 4/3 z čísla 24. Je-li daný poměr větší než jedna, nastane při změně v daném poměru zvětšení!

6 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Zmenšování čísla v daném poměru Zmenšit číslo v daném poměru znamená vynásobit toto číslo zlomkem vytvořeným z daného poměru tak, aby byl menší než jedna. To znamená v čitateli menší část poměru a ve jmenovateli část větší. Příklad: Zmenšete číslo 24 v poměru 3: Zmenšit číslo 24 v poměru 3:4 tedy znamená vynásobit číslo 24 zlomkem 3/4, tj. určit 3/4 z čísla 24. Je-li daný poměr menší než jedna, nastane při změně v daném poměru zmenšení!

7 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Přímá úměrnost (úměra) - opakování Počet rohlíků (kusů): Cena rohlíků (Kč): Příklad: Kolik korun bude stát nákup 1, 2, 3, 4, 5, 6, 7, 8 rohlíků, stojí-li jeden rohlík 2,- Kč? Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zvětší (zmenší) druhá veličina. V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina. Takový vztah mezi dvěma veličinami se nazývá přímá úměrnost. Říkáme, že veličiny jsou přímo úměrné.

8 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Přímá úměrnost (úměra) - opakování Počet rohlíků (kusů): Cena rohlíků (Kč): Závěr, který pro nás ze všech našich zjištění vyplývá: Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zvětší (zmenší) druhá veličina. V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina. Takový vztah mezi dvěma veličinami se nazývá přímá úměrnost. Říkáme, že veličiny jsou přímo úměrné.

9 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výpočet přímé úměrnosti (úměry) Počet rohlíků (kusů): Cena rohlíků (Kč): V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina. Z uvedeného tedy plyne, že pokud bychom neznali cenu 6 rohlíků, ale znali cenu 2 rohlíků, mohli bychom tuto určit zvětšením dané ceny v poměru počtu rohlíků.

10 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výpočet přímé úměrnosti (úměry) Počet rohlíků (kusů): Cena rohlíků (Kč): V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina. Více rohlíků... … znamená vyšší cenu... … a tak budeme číslo 4 zvětšovat v poměru nárůstu počtu rohlíků. x Zvětšování znamená násobení daného čísla poměrem zapsaným do zlomku tak, aby byl větší než jedna, tzn. čitatel byl větší než jmenovatel.

11 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výpočet přímé úměrnosti (úměry) Počet rohlíků (kusů): Cena rohlíků (Kč): V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina. Méně rohlíků... … znamená menší cenu... … a tak budeme číslo 10 zmenšovat v poměru snížení počtu rohlíků. x Zmenšování znamená násobení daného čísla poměrem zapsaným do zlomku tak, aby byl menší než jedna, tzn. čitatel byl menší než jmenovatel.

12 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Nepřímá úměrnost (úměra) - opakování Příklad: Chovatel psů má tři desetikilogramové balíky granulí. Vypočítejte, na jak dlouho mu tato zásoba potravy vydrží pro 1, 2, 3, 5, 6, 10, 15 psů, předpokládáme-li, že jeden pes sežere denně průměrně 1 kg granulí. Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zmenší (zvětší) druhá veličina. V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zmenší (zvětší) druhá veličina. Takový vztah mezi dvěma veličinami se nazývá nepřímá úměrnost. Říkáme, že veličiny jsou nepřímo úměrné. Počet psů: Počet dnů:

13 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výpočet nepřímé úměrnosti (úměry) V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zmenší (zvětší) druhá veličina. Počet psů: Počet dnů: x Více psů... … znamená méně dnů, na které zbývá krmivo... … a tak budeme číslo 15 zmenšovat v poměru nárůstu počtu psů. Zmenšování znamená násobení daného čísla poměrem zapsaným do zlomku tak, aby byl menší než jedna, tzn. čitatel byl menší než jmenovatel.

14 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výpočet nepřímé úměrnosti (úměry) V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zmenší (zvětší) druhá veličina. Počet psů: Počet dnů: x Méně psů... … znamená více dnů, na které zbývá krmivo... … a tak budeme číslo 5 zvětšovat v poměru snížení počtu psů. Zvětšování znamená násobení daného čísla poměrem zapsaným do zlomku tak, aby byl větší než jedna, tzn. čitatel byl větší než jmenovatel.

15 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Zápis zadání výpočtu úměrnosti Použijeme část našeho příkladu se psy: Šesti psům by vydržela zásoba krmiva na pět dní. Na kolik dní by vydržela psům dvěma? Počet psů: Počet dnů: x 6 psů …………… 5 dní 2 psi ……………. x dní Stejné veličiny zapisujeme vždy pod sebe. Nejsou-li, převedeme je i na stejné jednotky.

16 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Postup výpočtu úměrnosti Použijeme část našeho příkladu se psy: Šesti psům by vydržela zásoba krmiva na pět dní. Na kolik dní by vydržela psům dvěma? Počet psů: Počet dnů: x 6 psů …………… 5 dní 2 psi ……………. x dní „Sloupeček“ s neznámou zapíšeme ve tvaru... … dále následuje znaménko násobení a zvětšení či zmenšení dle druhého sloupečku dané úměrnosti. V tomto případě logicky zvětšení.

17 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Závěr Základem řešení všech příkladů na úměrnosti je logická úvaha, zda se neznámá hodnota jedné z veličin bude počítat zvětšováním či zmenšováním dané hodnoty této veličiny pomocí poměru daného hodnotami veličiny druhé!

18 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Která veličina a jak se bude měnit? Šest strojů vyrobí za směnu 360 součástek. Kolik součástek by za směnu vyrobilo 15 takových strojů?

19 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Která veličina a jak se bude měnit? Šest strojů vyrobí za směnu 360 součástek. Kolik součástek by za směnu vyrobilo 15 takových strojů? 6 strojů ………………. 360 součátek 15 strojů ……………….…. x součátek Bude se zvětšovat počet součástek, neboť více strojů vyrobí za stejnou dobu více součástek.

20 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Která veličina a jak se bude měnit? Tři stejná čerpadla vyprázdní nádrž za 7,5 hodiny. Za jak dlouho by vyprázdnilo tuto nádrž 5 stejně výkonných čerpadel?

21 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Která veličina a jak se bude měnit? Tři stejná čerpadla vyprázdní nádrž za 7,5 hodiny. Za jak dlouho by vyprázdnilo tuto nádrž 5 stejně výkonných čerpadel? 3 čerpadla ………………. 7,5 hodiny 5 čerpadel …………….….…. x hodin Bude se zmenšovat počet hodin, neboť více čerpadel vyprázdní stejnou nádrž (vyčerpá stejné množství vody) za kratší dobu.

22 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vymysli a zapiš další příklady přímé či nepřímé úměrnosti a urči u nich, které veličiny a jak se budou měnit?


Stáhnout ppt "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."

Podobné prezentace


Reklamy Google