Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Podobné prezentace


Prezentace na téma: "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."— Transkript prezentace:

1 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Poměr Dělení v daném poměru. Co je poměr.

2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Poměr Pojem poměr nás provází celým životem a setkáváme se s ním prakticky každodenně. Vzpomeňme jen na pár ukázkách některé případy, v nichž se v běžném životě s poměrem (pojmem poměr, vyjádřením poměru) setkáváme. Tak například poměr ředění sirupů, postřiků, čisticích prostředků, oleje apod. Obrázky:

3 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Poměr Nebo skóre sportovních utkání – např. poměr nastřílených branek domácím a hostujícím týmem, poměr střel, vyloučení apod.

4 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Poměr Případně měřítka map či plánů. Obázek:

5 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Poměr Co to tedy je ten poměr? Je to způsob porovnání dvou údajů. Oba porovnávané údaje musí být ve stejných jednotkách. Počet branek. Počet střel. Počet využitých přesilovek. Počet vyloučení. 1 mm : mm 1 cm : cm 1 dm : dm 1 m : m 1 km : km Vzdálenosti.

6 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Poměr Poměr porovnávaných údajů a,b zapisujeme a : b a čteme a ku b. 3:2 9:13 15:13 1:3 Poměr a : b můžeme zapsat ve tvaru zlomku: Číslo a>0 nazýváme první člen poměru. Číslo b>0 nazýváme druhý člen poměru.

7 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Poměr Zapište poměr chlapců a dívek ve vaší třídě. Záleží na pořadí členů v poměru! Hovoříme o navzájem převrácených poměrech. Zapište poměr dívek a chlapců ve vaší třídě. : : Poměr b:a je převráceným poměrem k poměru a:b.

8 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Užití poměru: Dělení v daném poměru. Př.: Částka 800,- Kč se má rozdělit mezi dva pracovníky v poměru 3 : 1. Vypočtěte, kolik Kč dostane každý. Jeden díl … 800 : 4 = 200,- Kč Poměr 3 : 1 znamená, že jeden pracovník dostane 3 stejné díly a druhý 1 stejný díl z 800,- Kč. Celkem tedy jde o čtyři stejné díly. První pracovník 3 díly … 3.200=600,- Kč Druhý pracovník 1 díl … 1.200=200,- Kč 800,- Kč 200,- Kč Zkouška: = 800,- Kč 600,- Kč

9 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 1: Rozdělte Kč mezi dvě osoby v poměru 3:5. Až budete hotovi nebo když si nebudete vědět rady, klikněte, a ukážu vám postup.

10 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 1: Rozdělte Kč mezi dvě osoby v poměru 3: ,- Kč musíme rozdělit na osm stejných dílů … = : 8 = díl … 1 500,- Kč První osoba dostane 3 díly : = 4 500,- Kč Druhá osoba dostane 5 dílů : = 7 500,- Kč Zkouška: = ,- Kč

11 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 2: Soška z bronzu má hmotnost 0,5 kg. Bronz je slitina cínu a mědi v poměru 1 : 4. Kolik gramů cínu a kolik gramů mědi obsahuje soška? Až budete hotovi nebo když si nebudete vědět rady, klikněte, a ukážu vám postup.

12 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 2: Soška z bronzu má hmotnost 0,5 kg. Bronz je slitina cínu a mědi v poměru 1 : 4. Kolik gramů cínu a kolik gramů mědi obsahuje soška? 500 g musíme rozdělit na pět stejných dílů … = : 5 = díl … 100 g Cín … = 100 g Měď … = 400 g Zkouška: = 500 g Protože otázka se ptá na gramy, převedeme si hned na začátku hmotnost sošky … 0,5 kg = 500 g … a dále tedy již budeme počítat s gramy. Soška obsahuje 100 gramů cínu a 400 gramů mědi.

13 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 3: Dva kamarádi David a Petr si vydělali na letní brigádě Kč. Tuto částku si rozdělili v poměru 12 : 13. O kolik více peněz dostal Petr? Až budete hotovi nebo když si nebudete vědět rady, klikněte, a ukážu vám postup.

14 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 3: Dva kamarádi David a Petr si vydělali na letní brigádě Kč. Tuto částku si rozdělili v poměru 12 : 13. O kolik více peněz dostal Petr? Kč musíme rozdělit na 25 stejných dílů … = : 25 = 60 1 díl … 60 Kč David dostal … = 720 Kč Petr dostal … = 780 Kč Zkouška: = Kč O kolik více dostal Petr … 780 – 720 = 60 Kč Petr dostal o 60 Kč více než David.

15 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 4: Křemílek a Vochomůrka si rozdělili nasbírané jedlé kaštany nejprve v poměru 7 : 4, ale potom poměr dělení změnili a rozdělili si kaštany v poměru 6 : 5. O kolik kaštanů si Vochomůrka v druhém dělení polepšil, byl-li celkový počet nasbíraných kaštanů 242? Až budete hotovi nebo když si nebudete vědět rady, klikněte, a ukážu vám postup.

16 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 4: Křemílek a Vochomůrka si rozdělili nasbírané jedlé kaštany nejprve v poměru 7 : 4, ale potom poměr dělení změnili a rozdělili si kaštany v poměru 6 : 5. O kolik kaštanů si Vochomůrka v druhém dělení polepšil, byl-li celkový počet nasbíraných kaštanů 242? 242 rozdělíme nejdříve na 11 stejných dílů … = : 11 = 22 … 1 díl … 22 kaštanů Křemílek by měl … = 154 kaštanů Vochomůrka by měl … = 88 kaštanů Zkouška: = 242 kaštanů O kolik si Vochomůrka polepšil … 110 – 88 = 22 kaštanů Vochomůrka si v druhém dělení polepšil o 22 kaštanů. I ve druhém dělení se 242 rozdělí na 11 stejných dílů … = : 11 = 22 … 1 díl … 22 kaštanů Křemílek by měl … = 132 kaštanů Vochomůrka by měl … = 110 kaštanů Zkouška: = 242 kaštanů

17 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pamatuj si! Dělení v daném poměru. Rozděl 10 jablek v poměru 3:2. Poměr hovoří o třech a dvou stejných dílech, tj. dohromady o pěti stejných dílech. 6 jablek 4 jablka

18 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pamatuj si! Dělení v daném poměru. Rozděl 10 jablek v poměru 3:2. Početně: 3:2 … = 5 stejných dílů 1 díl … 10 : 5 = 2 jablka 3 díly … 3. 2 = 6 jablek 2 díly … 2. 2 = 4 jablka Zkouška: = 10 jablek


Stáhnout ppt "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."

Podobné prezentace


Reklamy Google