Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Podobné prezentace


Prezentace na téma: "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."— Transkript prezentace:

1 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Slovní úlohy o společné práci − 2

2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Jak při řešení slovních úloh postupovat? 1. Pozorně si přečti text úlohy (raději několikrát). 2. Mezi neznámými údaji zvol jeden, o kterém nevíš vůbec nic, jako neznámou. 3. Pomocí zvolené neznámé a zadaných podmínek vyjádři všechny ostatní údaje z textu. 4. Vyjádři logickou rovnost plynoucí z textu úlohy a na jejím základě sestav rovnici a vyřeš ji. 5. Proveď zkoušku, kterou ověříš, že získané výsledky vyhovují všem podmínkám úlohy. 6. Napiš odpovědi na otázky zadané úlohy.

3 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Slovní úloha o společné práci Úlohy o společné práci jsou si velice podobné a počítají se v podstatě pořád stejně. Takže: • Pracovat mohou dvě, tři, ale i více těles, osob najednou. • Práci začnou i ukončí většinou naráz (stejná doba společné práce, stejný čas). • Můžeme však počítat i příklady, kdy tělesa, osoby nepracují naráz, ale jeden začne a druhý se k němu přidá, či naopak začnou společně a jeden skončí dříve (pak doba, čas společné práce stejný není). • Celá společná práce se rovná jedné (ať pracují 2, 3, 4 nebo i více jedinců, to, na čem společně „makají“, je vždy rovno 1). • Při výpočtech vycházíme vždy z toho, jakou část společné práce udělá každé těleso, každá osoba za časovou jednotku (hodinu, den, minutu…) • Celá společná práce je tvořena součtem částí společné práce, vykonaných jednotlivými tělesy, osobami, které se na společné práci podílejí. • Někdy nemusí pracovat společně, ale mohou pracovat proti sobě, např. jednou rourou voda přitéká, druhou odtéká. Pak není společná práce tvořena součtem, ale rozdílem. Tak si to pojďme ukázat na konkrétních příkladech.

4 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. • Můžeme však počítat i příklady, kdy tělesa, osoby nepracují naráz, ale jeden začne a druhý se k němu přidá, či naopak začnou společně a jeden skončí dříve (pak doba, čas společné práce stejný není). Slovní úloha o společné práci Úlohy o společné práci jsou si velice podobné a počítají se v podstatě pořád stejně. Takže: • Pracovat mohou dvě, tři, ale i více těles, osob najednou. • Práci začnou i ukončí většinou naráz (stejná doba společné práce, stejný čas). • Celá společná práce se rovná jedné (ať pracují 2, 3, 4 nebo i více jedinců, to, na čem společně „makají“, je vždy rovno 1). • Při výpočtech vycházíme vždy z toho, jakou část společné práce udělá každé těleso, každá osoba za časovou jednotku (hodinu, den, minutu…). • Celá společná práce je tvořena součtem částí společné práce, vykonaných jednotlivými tělesy, osobami, které se na společné práci podílejí. • Někdy nemusí pracovat společně, ale mohou pracovat proti sobě, např. jednou rourou voda přitéká, druhou odtéká. Pak není společná práce tvořena součtem, ale rozdílem. Tak si to pojďme ukázat na konkrétních příkladech. Právě na tento typ příkladů o společné práci se teď podíváme.

5 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Slovní úloha o společné práci Prvním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní, jestliže se nejdříve na 5 hodin otevře jen první přítok a teprve potom i přítok druhý? Ukázka zadání takové úlohy:

6 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Slovní úloha o společné práci Prvním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní, jestliže se nejdříve na 5 hodin otevře jen první přítok a teprve potom i přítok druhý? 1. přítokem by se bazén naplnil za 20 hodin, což znamená, že za 1 hodinu by se naplnila 1/20 bazénu, za 2 hodiny pak 2/20 atd. Protože se bazén nejdříve plnil 5 hodin jen tímto přítokem a pak teprve oběma společně, je i doba plnění tímto přítokem o 5 hodin delší než doba společná, tzn. (x + 5) hodin a naplněná část bazénu za tuto dobu je tedy (x + 5)/ přítokem by se bazén naplnil za 30 hodin, což znamená, že za 1 hodinu by se naplnila 1/30 bazénu, za 2 hodiny pak 2/30 atd. Za x hodin společné práce se tedy naplní x/30 bazénu. Jako neznámou x zvolíme veličinu, o které víme nejméně, a tou je doba společné práce, tzn. doba, kdy byly otevřeny oba přítoky společně. Mimochodem − jde o dobu, po kterou byl otevřen druhý přítok. První přítok byl otevřen o 5 hodin dříve, tzn. po dobu o 5 hodin delší, tj. (x + 5) hodin.

7 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Prvním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní, jestliže se nejdříve na 5 hodin otevře jen první přítok a teprve potom i přítok druhý? Tak ještě jednou a pomaleji.

8 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Prvním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní, jestliže se nejdříve na 5 hodin otevře jen první přítok a teprve potom i přítok druhý?

9 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Prvním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní, jestliže se nejdříve na 5 hodin otevře jen první přítok a teprve potom i přítok druhý? Typická rovnice slovních úloh o společné práci Jedna celá společná práce. Doba práce druhého Doba společné práce Doba práce prvního Čas navíc, po který pracuje samostatně před společným časem

10 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Prvním přítokem se bazén naplní za 20 hodin, druhým za 30 hodin. Za jak dlouho se bazén naplní, jestliže se nejdříve na 5 hodin otevře jen první přítok a teprve potom i přítok druhý? Zbavíme se zlomků vynásobením celé rovnice společným jmenovatelem Bazén se naplní za 14 hodin. Společně se bude bazén oběma přítoky plnit 9 hodin. Otázka se však neptá na dobu společného plnění, ale na dobu, za kterou se bazén naplní. Proto musíme vzít v úvahu i prvních 5 hodin plnění, kdy se plnilo jen prvním přítokem. Bazén se tedy naplnil za 9 a 5, tj. 14 hodin.

11 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Vodní nádrž se vypustí větším stavidlem za 10 hodin, menším za 12 hodin. Nádrž vypouštěli tak, že první čtyři hodiny otevřeli jen větší stavidlo, teprve pak otevřeli také stavidlo menší. Urči dobu, jakou trvalo vypouštění nádrže.

12 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Vodní nádrž se vypustí větším stavidlem za 10 hodin, menším za 12 hodin. Nádrž vypouštěli tak, že první čtyři hodiny otevřeli jen větší stavidlo, teprve pak otevřeli také stavidlo menší. Urči dobu, jakou trvalo vypouštění nádrže. Vypouštění nádrže trvalo přibližně 7,27 hodiny.. __ Opět pozor na to, že jsme vypočítali dobu společného vypouštění. Vodní nádrž se však nejdříve 4 hodiny vypouštěla jen větším stavidlem a teprve potom oběma stavidly společně. Celková doba vypouštění je tedy 3, = 7,27 hodiny.

13 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Závod A je schopen splnit zakázku za 12 dní, závod B splní tutéž zakázku za 18 dní. Za kolik dní bude zakázka splněna, jestliže první dva dny na ní pracuje jen závod A, zbývající dny pak oba závody?

14 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad: Závod A je schopen splnit zakázku za 12 dní, závod B splní tutéž zakázku za 18 dní. Za kolik dní bude zakázka splněna, jestliže první dva dny na ní pracuje jen závod A, zbývající dny pak oba závody? Zakázka bude splněna za 8 dní. Pozor na to, že jsme vypočítali dobu společné práce na zakázce. Dva dny však na ni pracoval jen závod A, teprve potom oba závody společně. Celková doba plnění celé zakázky je tedy = 8 dní.


Stáhnout ppt "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."

Podobné prezentace


Reklamy Google