Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Struktura rezerv neživotního pojištění Helga Krafferová UNIQA pojišťovna, a.s. 16.11.2007.

Podobné prezentace


Prezentace na téma: "Struktura rezerv neživotního pojištění Helga Krafferová UNIQA pojišťovna, a.s. 16.11.2007."— Transkript prezentace:

1 Struktura rezerv neživotního pojištění Helga Krafferová UNIQA pojišťovna, a.s

2 2 Téma Odhad chyby v odhadech IBNR metodou CL Měření opatrnosti v odhadech IBNR Testování předpokladů metody CL Iterační odhad parametrů v metodě BF Výpočtové programy

3 3 Značení C ik - kumulované škody nastalé v roce i tak jak jsou známy ve vývojovém roce k Q ik - nekumulované škody R i - rezerva roku i, R i = C iI – C i,I+1-i

4 4 Předpoklady 1) E(C i,k+1 | C i,1, …, C i,k )= f k C i,k, k = 1,…, I-1 2) {C i1, …, C iI }, {C j1, …, C jI } pro nezávislé Odhady

5 5 Tvrzení D = {C i,k | } E(C i,I | D) = C i,I+1-i f I+1-i. …. f I-1 Důkaz užitím 1) a 2) E(C i,I | C i,1,…, C i,I+1-i ) = E{E(C i,I | C i,1,…, C i,I+1-i )| …} = E(C i,I-1.f I-1 | C i,1,…, C i,I+1-i ) = = f I-1 E(C i,I-1 | C i,1,…, C i,I+1-i ) = … má shodný tvar s E(C i,I | D), což je nejlepší odhad C i,I založený na D

6 6 Tvrzení Odhady f jsou nestranné a nekorelované Nekorelovanost je překvapující vzhledem k závislosti na shodných datech.

7 7 Máme Tedy i je nestranný odhad E(C i,I | D) a je nestranný odhad R i

8 8 Střední kvadratická chyba (mean squared error) způsobená budoucí náhodou neuvažuje se nepodmíněná

9 9 obecně Zápis poukazuje na 2 složky – rozptyl n.v. C i I a chyba odhadu. Proto je třeba učinit předpoklad o rozptylu. jsou C i k – váženým průměrem individuálních vývojových faktorů Tedy uvažujeme proporcionální k C i k

10 10 Předpoklad 3) kde neznámý parametr Odhad je nestranným odhadem

11 11 odhad posledního parametru když jinak extrapolovat řadu jednoduše např. když

12 12 Tvrzení Za předpokladů 1), 2) a 3) lze odhadnout Pro existuje obdobná formule.

13 13 Příklad

14 14 Nebyly učiněny předpoklady o rozdělení C iI, za předpokladu normálního rozdělení lze stanovit hodnoty pro tzv. 90/10 rezervu (resp. 75/25) Technická bezpečnostní přirážka

15 15

16 16 se skládá z rozptylu C a chyby odhadu neobsahuje chybu způsobenou chybným modelem nebo změnou chování v budoucnu Proto nutné testování předpokladů CL

17 17 1)E(C i,k+1 | C i,1, …, C i,k ) = f k C i,k -Zde f k nezávisí na roku vzniku i -Může být konstanta tak, že E(C i,k+1 | C i,1, …, C i,k ) = a + f k C i,k -Místo na C ik může být závislost na C iI 2) {C i1, …, C iI }, {C j1, …, C jI } pro nezávislé -Narušení silným diagonálním efektem, např. rozpuštěny/navýšeny rezervy RBNS všech let -Inflace 3) -Nezávisí na roku vzniku i -Např. potom za je lepší vzít aritmetický průměr individuálních vývojových faktorů -Jestliže pak

18 18 1) Signifikantnost f k Pro testování vhodnější přírůstkový faktor Testujeme rozdílnost od nuly. Je-li možnost statistického programu - regresní analýzy s odhadem parametru získáme i odhad jeho směrodatné odchylky. Lze formálně statisticky testovat normalitu rozložení vývojových faktorů. Je-li faktor větší než dvojnásobek směrodatné odchylky, lze mít za to, že je signifikantně >0; stačí 1,65 násobek

19 19 2) Alternativní vzorce S lineární konstantou závislou na vývojovém roce S parametrem závislým na roku vzniku S vlivem kalendářního roku Parametry odhadovány MNČ (někdy vyžaduje iter. postup) Pro testování vhodnosti modelu lze použít charakteristiku SSE (sum of sq. error) Třeba vzít v úvahu počet parametrů - není obecně přijímaná metoda jak

20 20 n počet pozorování p počet parametrů Akaike Information Criterion dovoluje přeparametrizaci Bayesian Information Criterion CL má 1 parametr pro 1 vývojový rok, což dává výhodu

21 21 a) Konstanta Často vhodné přidat pouze do prvního vývojového roku, kde může být významnější než vývojový faktor. Pro znormovaný trojúhelník expozicí (pojistko-roky), případně pojistným je často vhodnější metoda čistě konstanty než metoda čistě vývojového faktoru. Zde pro porovnání metod lze sledovat pouze významnost konstanty a faktorů, neboť CL pouze zvláštním případem.

22 22 b) Parametr závislý na roku vzniku V původní metodě Bornhuetter-Ferguson h(i) je odhad celkových škod na jiném základě než na datech z trojúhelníku. Modifikace BF – data trojúhelníku použita i pro odhad h(i). h(i) je pouze proporcionální k celkovým škodám roku i, tato proporcionalita opravena faktory Parametr pro každý rok vzniku i vývoje. Je-li m let, m + m – 1. Je-li h(i) přímo odhad, tak tedy 2m-2 parametrů. Nelze brát v úvahu statistickou významnost parametrů, ale

23 23 To, že Q i,k+1 nezávisí na C ik lze interpretovat tak, že C ik obsahují náhodnou složku, která neovlivní budoucí vývoj. Zatímco CL by aplikovaly vývojové faktory na tyto chyby a tím celkovou chybu zvyšovaly. Simulace škod

24 24 CL i BF nemá problém se změnou objemu z roku na rok, jestliže vývojový model zůstane stejný BF má nevýhodu velkého počtu parametrů, je dobré zkusit zredukovat, např. h(i) seskupit do skupin nebo zavést lineární trend h(i) = a + b.i

25 25 Speciální případ BF - Cape Cod h(i) ~ h oproti CL pouze tento parametr navíc, ale změníme-li h, lze tuto změnu vyrovnat změnou všech f, tedy stejný počet parametrů trojúhelník musí mít stabilní úroveň škodní kvóty i expozice v jednotlivých letech expozici a inflaci lze „opravit“

26 26 CC předpokládá, že roky, kde jsou dosud nízké nebo vysoké škody budou mít stejný budoucí vývoj Q ik, takže dobrý a špatný rok se od sebe liší jen v některých vývojových letech a ve všech ostatních obdobích mají srovnatelný výskyt objemu škod CL a obecný BF naopak předpokládá, že špatný rok bude mít vyšší výskyt škod Q ik ve valné většině období

27 27 3) Linearita modelu lineární aproximace křivky – rezidua kladná, záporná, kladná zda odchylky nevykazují podobný tvar

28 28 4) Stabilita vývojového faktoru uvažujeme individuální vývojové faktory

29 29 je-li patrný trend lze užít váženého průměru s vyšší váhou posledních let nebo vyrovnat pomocí klouzavých průměrů nestabilita trojúhelníku může být způsobena změnou ve vyřizování škod, např. mění-li se procento uzavřenosti škod v jednotlivých letech je-li pouze jednotlivá příčina (např. velká škoda, povodně, vichřice) lze vyloučit z dat

30 30 5) Nekorelované sloupce nekumulativního trojúhelníku mimo pozorování v rámci jednoho roku jsou Q ik a Q jl nezávislé je-li vývojový rok s vysokou škodou zpravidla následován rokem s nízkou škodou, je třeba toto vzít v úvahu lze spočítat výběrový korelační koeficient r pro všechny dvojice sloupců v trojúhelníku individuálních faktorů

31 31 nyní zda je korelace významná (H 0 : r = 0) např. na 10% hladině pomocí veličiny mající t-rozdělení o n-2 stupních volnosti (Prof. Anděl Statistické metody) jestliže máme 1 korelaci na hladině 10% nemusí to ještě znamenat korelovaný trojúhelník

32 32 problém může znamenat více korelovaných sloupců, co znamená „více“? n počet všech dvojic sloupců v trojúhelníku počet signifikantních korelací ~ binomické rozdělení (n,10%) směrodatná odchylka pokud počet signifikantních korelací > je třeba uvažovat korelovaný trojúhelník opravit vývojové faktory pomocí vztahu

33 33 6) Ne zvlášť vysoké / nízké diagonály zda počet vysokých / nízkých individuálních faktorů na diagonále není vysoký v trojúhelníku výplat se může na diagonále objevovat vliv inflace diagonální efekt může být multiplikativní, aditivní

34 34 Iterativní metoda odhadu parametrů BF je třeba minimalizovat třeba počáteční hodnota parametrů nebo h použijeme jakoukoli „rozumnou“ hodnotu, např. nebo začneme s těmito hodnotami a nalezneme MNČ hodnoty h

35 35 MNČ pro každé i jedna regrese, tím nalezeny nejlepší h(i) pro daná potom

36 36 takto se pokračuje dokud se neobjeví konvergence může nastat konvergence k lokálnímu minimu, proto je třeba vyzkoušet více počátečních hodnot cca 10 iterací pozor h(i) nejsou odhady přímo celkové škody roku i, ale odhadují ji společně s parametry

37 37 Výpočtové programy MS Excel 1 „profesionální“ od zajišťovny 1 Axa Francie, 2 UNIQA Vídeň

38 38 Prameny Thomas Mack: Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates, 1993 Gary G. Venter: Testing the Assumption of Age-to-age Factors

39 Děkuji za pozornost.


Stáhnout ppt "Struktura rezerv neživotního pojištění Helga Krafferová UNIQA pojišťovna, a.s. 16.11.2007."

Podobné prezentace


Reklamy Google