Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

LOGISTICKÉ SYSTÉMY 14/15. Osnova přednášky Výrobní logistika II Metody rozmisťování objektů – Metoda souřadnic – Lokace depa na vrchol – Lokace absolutního.

Podobné prezentace


Prezentace na téma: "LOGISTICKÉ SYSTÉMY 14/15. Osnova přednášky Výrobní logistika II Metody rozmisťování objektů – Metoda souřadnic – Lokace depa na vrchol – Lokace absolutního."— Transkript prezentace:

1 LOGISTICKÉ SYSTÉMY 14/15

2 Osnova přednášky Výrobní logistika II Metody rozmisťování objektů – Metoda souřadnic – Lokace depa na vrchol – Lokace absolutního depa

3 Metoda souřadnic •Metoda je vhodná především pro umísťování centrálních objektů (např. skladů) •Cílem řešení je najít “váhový střed“ resp. těžiště, tedy souřadnice x, y tohoto objektu dle vztahů: Kde q i je objem přepravy (za jednotku času)

4 Měření vzdálenosti objektů •Osová vzdálenost (pro pravoúhlou oblast, šachovnicové rozmístění) •Kvadratická vzdálenost •Přímá vzdálenost (cesty „na dohled“, volné prostranství) •Přímá korigovaná vzdálenost (zakřivené cesty matriálu)

5 Lokace depa •Depo - místo na síti, z kterého se provádí obsluha vrcholů a hran sítě. Depem tedy nazýváme střediska obsluhy např. sklady materiálu, střediska záchranné služby, letiště atd. –Obecně lze depo umístit do libovolného místa na síti, tedy na hranu nebo do vrcholu. V síti je možné umístit libovolný počet dep. –Množinu dep budeme značit D k, kde počet dep značíme k = |D k |. –Pro k platí: 1 ≤ k ≤ n, kde n = |V| •Dopravní práce - udává objem přepravy, kterou je nutné vykonat při obsluze vrcholu v  V resp. hrany h  X obsluhované z depa v  Dk. Při výpočtu dopravní práce vycházíme z úvahy, ve které se obsluhovací vozidlo musí přemístit z depa do obsluhovaného místa a po obsluze se opět po téže nejkratší cestě vrátí do depa. Projetou vzdálenost násobíme váhou obsluhovaného vrcholu resp. hrany.

6 Příklad lokace depa Ohodnocení hran sítě představuje délku úseku v desítkách kilometrů a ohodnocení vrcholů sítě udává množství vyrobeného materiálu. Určete, v kterém z vrcholů sítě je optimální umístění centra, aby se minimalizovaly celkový hmotový tok (resp. dopravní práce).

7 Příklad lokace depa •K výpočtům hledajících optimální umístění střediska v síti při minimalizaci celkového objemu přeprav je potřeba znát údaje o vzdálenosti vrcholů u, v zadané síti. •Je třeba sestavit –matici minimálních vzdáleností vrcholů –matici vzdáleností vrcholů k hranám sítě (v případě obsluhy hran sítě)

8 Příklad lokace depa

9 Cílem této úlohy je minimalizovat celkový objem přeprav (hmotového toku). Kritériem pro určení optimálního umístění depa na vrcholově ohodnocené síti je dopravní práce, kterou vypočteme podle vztahu : Optimálním umístěním k dep na síti jsou vrcholy v pro které je hodnota dopravní práce minimální ze všech možných kombinací umístění k dep na síti:

10 Příklad lokace depa •Lokační problém je NP obtížná kombinatorická úloha. •Obecně se při určení optimálního umístění k dep na síti neporovnávají hodnotící kritéria pro všechny existující kombinace řešení vzhledem k rychle rostoucí početní náročnosti s rostoucí velikostí sítě a počtu dep. •Úlohy hledání optimálního umístění k dep se proto řeší heuristickými algoritmy •Zadaná síť v tomto příkladu není rozsáhlá. Hodnotu dopravní práce proto určíme pro všechny varianty řešení. K určení vzdáleností d(u, v) použijeme matici vzdáleností mezi vrcholy.

11 Příklad lokace depa Dopravní práce pro možnost umístění střediska do vrcholu v1 je: f(D1´) = 2×0×6 + 2×2×2 + 2×3×5 + 2×3×3 = 56 Dopravní práce pro možnost umístění střediska do vrcholu v2 je: f(D2´) = 2×2×6 + 2×0×2 + 2×1×5 + 2×4×3 = 58 Dopravní práce pro možnost umístění střediska do vrcholu v3 je: f(D3´) = 2×3×6 + 2×1×2 + 2×0×5 + 2×5×3 = 70 Dopravní práce pro možnost umístění střediska do vrcholu v4 je: f(D4´) = 2×3×6 + 2×4×2 + 2×5×5 + 2×0×3 = 102 Optimálním umístěním jednoho depa v zadané síti je vrchol, pro který: f(D1) = min {56, 58, 70, 102} = 56 Optimální umístění jednoho depa v síti je ve vrcholu v1.

12 Lokace absolutního depa •K vyhledání absolutního depa slouží Hakimiho algoritmus (HA). •HA řeší problematiku umisťování havarijních středisek. –Vrcholy v dané dopravní síti reprezentují místa vzniku negativních událostí. Úkolem je umístit v této síti obslužné středisko, které bude tyto negativní události likvidovat.

13 Lokace absolutního depa •Pojmy: –Excentricita vrcholu u (maximální obslužná vzdálenost, resp. vzdálenost k nejvzdálenějšímu vrcholu od vrcholu u): –Lze jí získat odečtením maximální hodnoty v matici vzdáleností na daném řádku pro daný vrchol u.,

14 Lokace absolutního depa •Pojmy: –Vážená excentricita vrcholu u (maximální obslužná náročnost): –kde w(v) je váha vrcholu (počet obsluh za nějaké stanovené období).,

15 Lokace absolutního depa Vážená excentricita obecného místa y v síti:

16 Lokace absolutního depa •Vzdálenostně optimálně umístěné depo je depo považujeme za vzdálenostně optimálně umístěné v případě, leží – li ve vrcholu v *, pro jehož váženou excentricitu platí: •Absolutně vzdálenostně optimálně umístěné depo (absolutní depo) je depo považujeme za absolutní tehdy, leží-li v místě sítě, pro jehož váženou excentricitu platí:..

17 Hakimiho algoritmus •Algoritmus vyhledává na každé hraně grafu místo (resp. místa) s minimální váženou excentricitou a z těchto nalezených vybereme to, pro které bude vážená excentricita minimální, v tomto místě umístíme depo.

18 Hakimiho algoritmus ykyk Vb Va Vi e

19 Hakimiho algoritmus •Hakimiho algoritmus zavádí symboly T i a T i ´, což jsou funkční zápisy vážených excentricit. –T i je zápisem vážené excentricity při obsluze přes vrchol v b, –T i ´ je zápisem vážené excentricity při obsluze přes vrchol v a.

20 Hakimiho algoritmus •Příklad - viz soubor –LogistickeSystemy_AdP14.doc


Stáhnout ppt "LOGISTICKÉ SYSTÉMY 14/15. Osnova přednášky Výrobní logistika II Metody rozmisťování objektů – Metoda souřadnic – Lokace depa na vrchol – Lokace absolutního."

Podobné prezentace


Reklamy Google