Název školy: Gymnázium Zlín - Lesní čtvrť

Slides:



Advertisements
Podobné prezentace
Osová souměrnost Najdeš rozdíly mezi těmito obrázky? B A
Advertisements

Shodná zobrazení.
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: , ; fax:
Autor: Mgr. Jana Pavlůsková Datum: květen 2012 Ročník: 6. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
Osově souměrné útvary Narýsuj čtverec A'B'C'D' osově souměrný se čtvercem ABCD podle osy o, která prochází body A, C. Osa souměrnosti o prochází body A,
10_Podobná zobrazení V geometrii o dvou útvarech říkáme, že jsou podobné, pokud je druhý z nich v určitém měřítku zmenšeným nebo zvětšeným obrazem prvého.
Vzdělávací obor: Matematika
Téma: Shodnosti a souměrnosti
Středová souměrnost Zpracovaly: Barbora Šimko a Sylvie Kozárová.
Autor: Mgr. Svatava Sekerková
Vzdělávací oblast: Matematika Autor: Mgr. Robert Kecskés Jazyk: Český
Zkvalitnění kompetencí pedagogů
Zkvalitnění kompetencí pedagogů
POZNÁMKY ve formátu PDF
6_Geometrické obrazce Mnohoúhelník Lomená čára: Uzavřená lomená čára:
* Středová souměrnost Matematika – 7. ročník *
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
9_Shodná zobrazení II Posunutí v rovině je přímá shodnost, které každému bodu X roviny přiřazuje obraz X´ tak, že platí XX = s, kde s je daný vektor.
IV/ Podobnost trojúhelníků
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
Vytvořila Helena Černá
Zkvalitnění kompetencí pedagogů ISŠ Rakovník IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Integrovaná.
Jak zjistíme, co jsou to shodné útvary ?
Autor: Mgr. Jana Pavlůsková Datum: březen 2013 Ročník: 7. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt: CZ.1.07/1.5.00/
VY_32_INOVACE_M.2.10_Geometrické tvary-prezentace
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
IV/ Obvody a obsahy geometrických obrazců
Příklady na využití. Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro.
Užití vektorového součinu
Autor: Mgr. Jana Pavlůsková Datum: březen 2013 Ročník: 7. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
„Výuka na gymnáziu podporovaná ICT“.
PLANIMETRIE Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T.G. Masaryka, Kostelec nad Orlicí Autor: Mgr. Renata Čermáková.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
SHODNÁ A PODOBNÁ ZOBRAZENÍ
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Elektronická učebnice - II
Rovnoběžníky Marcol René.
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Shodná zobrazení Středová souměrnost Matematika 7.ročník ZŠ
Středová souměrnost.
Shodné zobrazení Obrazem libovolné úsečky AB
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Shodná zobrazení Osová souměrnost Matematika 6.ročník ZŠ
Osová souměrnost.
Název školy: Gymnázium Zlín - Lesní čtvrť
Gymnázium Jiřího Ortena KUTNÁ HORA
Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt: CZ.1.07/1.5.00/
Osová souměrnost.
* Osová souměrnost Matematika – 6. ročník *
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Posunutí.
Výpočty obvodů a obsahů rovinných obrazců
Název školy: Gymnázium Zlín - Lesní čtvrť
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
30.
Čtyřúhelníky: OBECNÝ ČTYŘÚHELNÍK ROVNOBĚŽNÍKY OBDÉLNÍK ČTVEREC
Nekonečná geometrická řada Název školyGymnázium Zlín - Lesní čtvrť Číslo projektuCZ.1.07/1.5.00/ Název projektuRozvoj žákovských.
PLANIMETRIE MATEMATIKA - 2.ROČNÍK Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T.G. Masaryka, Kostelec nad.
FUNKCE, KONSTRUKČNÍ ÚLOHY Převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost.
Obrazy útvarů souměrně sdružených podle osy souměrnosti
VY_32_INOVACE_05– Rovinné útvary, 2. ročník
Vytvořeno v rámci v projektu „EU peníze školám“
Elektronické učební materiály - II. stupeň Matematika
Název školy : Základní škola a mateřská škola,
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha - východ
Základní škola a Mateřská škola, Liberec, Barvířská 38/6, příspěvková organizace Středová souměrnost Název : VY_32_inovace_17 Matematika - středová.
Transkript prezentace:

Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/34.0484 Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název DUM: SHODNÁ ZOBRAZENÍ – STŘEDOVÁ SOUMĚRNOST Označení DUM: VY_32_INOVACE_02_1_14 Autor: Mgr. Helena Šenkeříková Datum: 4. 6. 2012 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Matematika Tematický okruh: PLANIMETRIE Ročník: 2. ročník Anotace: Definice a názorné ukázky shodných zobrazení Použitá literatura: Planimetrie, učebnice pro gymnázia, autor RNDr. Eva Pomykalová, vydalo nakladatelství PROMETHEUS www.zlinskedumy.cz

ZOBRAZENÍ V ROVINĚ Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X´ roviny. Bod X se nazývá vzor, bod X´ jeho obraz; zapisujeme Z: X → X´ Množinu obrazů všech bodů útvaru U označíme U´ a nazýváme obraz útvaru U. Body X, pro jejichž obrazy platí X´ = X, se nazývají samodružné body zobrazení. Je-li U´ = U, nazýváme útvar samodružný útvar zobrazení. Zobrazení, ve kterém je každý bod samodružný, se nazývá identita.

SHODNÁ ZOBRAZENÍ Zobrazení v rovině je shodné zobrazení nebo také shodnost, jestliže obrazem každé úsečky AB je úsečka A´B´ shodná s úsečkou AB.

STŘEDOVÁ SOUMĚRNOST Je dán bod S. Středová souměrnost se středem S je shodné zobrazení S(S), které přiřazuje: 1. každému bodu X  S bod X´ tak, že bod S je středem úsečky XX´ 2. bodu S bod S´= S (bod S je samodružný bod)

Středová souměrnost je přímá shodnost, protože útvar (v ukázce trojúhelník ABC) lze přemístit v dané rovině.

Je-li útvar U=U´, pak říkáme, že útvar U je souměrně sdružený podle středu S. Rovnostranný trojúhelník Rovnoramenný trojúhelník obdélník čtverec Pravidelný šestiúhelník kosodélník Pravidelný pětiúhelník kosočtverec

ÚKOL Narýsujte trojúhelník ABC: a = 5 cm, b = 5 cm, c = 6 cm Bod S leží uvnitř trojúhelníka. Narýsujte obraz trojúhelníka ABC ve středové souměrnosti S(S)

VÝSLEDEK