Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Teorie her pro manažery Teorie her- VŠFS Jiří Mihola, 2013 Téma 2.

Podobné prezentace


Prezentace na téma: "Teorie her pro manažery Teorie her- VŠFS Jiří Mihola, 2013 Téma 2."— Transkript prezentace:

1 Teorie her pro manažery Teorie her- VŠFS Jiří Mihola, Téma 2

2 Desková hra GO 548 př. n. l. kronika pana Cuo vznik Čína vznik Čína 2 hráči pokládají střádavě kameny 2 hráči pokládají střádavě kameny velikost pole 19 x 19 velikost pole 19 x 19 obklopené kameny jsou zajaty obklopené kameny jsou zajaty cílem je ovládnout větší území cílem je ovládnout větší území existuje tahů, 922 silných existuje tahů, 922 silných počet možných her počet možných her hra trvá obvykle 150 tahů hra trvá obvykle 150 tahů jeden tah má až 250 možností jeden tah má až 250 možností počítač zatím prohrává i s dětmi počítač zatím prohrává i s dětmi počítač si ale ví rady se hrou 9x9 počítač si ale ví rady se hrou 9x9

3 Jezdcova procházka 1759 Moivre, Euler, Legendre Jezdec musí skočit na každé pole šachovnice a to jen jednou. Jezdec musí skočit na každé pole šachovnice a to jen jednou. Daleko od sebe. Daleko od sebe. Na jeden tah. Na jeden tah. Uzavřená smyčka 64 tahů. Uzavřená smyčka 64 tahů. Jednu a druhou polovinu šachovnice Jednu a druhou polovinu šachovnice Existuje matematická studie Existuje matematická studie Hraje se také na krychli Hraje se také na krychli Řešení je i pro válec, Möbiovu pásku, Kleinovu lahev a ve vícerozměrných prostředích. Řešení je i pro válec, Möbiovu pásku, Kleinovu lahev a ve vícerozměrných prostředích.

4 Ikosiánská hra 1857 William Roman Hamilton (1805 – 1865) Cílem je nalézt cestu po hranách dvanáctistěnu tak, aby každým vrcholem prošla jen jednou. Cílem je nalézt cestu po hranách dvanáctistěnu tak, aby každým vrcholem prošla jen jednou. Ikosiánský kalkulus. Ikosiánský kalkulus. Práva na deskovou hru koupil londýnský výrobce hraček Práva na deskovou hru koupil londýnský výrobce hraček Hra nebyla úspěšná, možná proto, že nebyla moc komplikovaná Hra nebyla úspěšná, možná proto, že nebyla moc komplikovaná

5 Patnáctka 1874 Noyes Palmer Chapman (1811 – 1886) Populární hlavolam. Populární hlavolam. Jedno pole je prázdné. Jedno pole je prázdné. Úkolem je srovnat čísla za sebou. Úkolem je srovnat čísla za sebou. Je-li prohozena jen 14 a 15, hlavolam nelze vyřešit (1000$). Je-li prohozena jen 14 a 15, hlavolam nelze vyřešit (1000$). Náhodně vložené kameny lze vyřešit jen v polovině případů. Náhodně vložené kameny lze vyřešit jen v polovině případů. Šachysta Bobby Fischer řešil „15“ za 30 s. Šachysta Bobby Fischer řešil „15“ za 30 s.

6 Strategie prasátek 1945 John Scarna (1903 – 1985) Jednoduchá pravidla, přesto překvapivě složité strategie. Jednoduchá pravidla, přesto překvapivě složité strategie. Vymyslel americký kouzelník John Scarna Vymyslel americký kouzelník John Scarna Hráč hází kostkou dokud se neobjeví 1, pak si hráč nepřipisuje žádný bod a hraje soupeř. Pokud se hráč zdrží dalšího hodu, připíše si dosavadní součet bodů v sérii. Vyhrává ten, kdo získá dříve 100 bodů. Hráč hází kostkou dokud se neobjeví 1, pak si hráč nepřipisuje žádný bod a hraje soupeř. Pokud se hráč zdrží dalšího hodu, připíše si dosavadní součet bodů v sérii. Vyhrává ten, kdo získá dříve 100 bodů. Je to hra na riziko. Je to hra na riziko. Strategie optimálního postupu se nenašly. Strategie optimálního postupu se nenašly. Optimalizace v kolech není totéž jako hra na výhru. Optimalizace v kolech není totéž jako hra na výhru.

7 Čtyři kostky 1966 Frank Armbruster (*1929) Cílem je uspořádat kostičky tak, aby na každé straně byly všechny 4 barvy. Cílem je uspořádat kostičky tak, aby na každé straně byly všechny 4 barvy. Existuje uspořádání do řady. Jen 2 jsou správné. Existuje uspořádání do řady. Jen 2 jsou správné. Celkem možností uspořádání, ale je možné jakékoliv pořadí kostek. Celkem možností uspořádání, ale je možné jakékoliv pořadí kostek. Pomocí teorie grafů se to dá řešit za pár minut.. Pomocí teorie grafů se to dá řešit za pár minut.. V šedesátých létech se prodalo 12 mil. hlavolamů. V šedesátých létech se prodalo 12 mil. hlavolamů. Vhodné pro výuku permutací a kombinací. Vhodné pro výuku permutací a kombinací. Prodávalo se též pod názvem Velký mučitel. Prodávalo se též pod názvem Velký mučitel.

8 Rubikova kostka 1974 Ernó Rubik (*1944) maďarský sochař a architekt Do roku 1982 se prodalo více než 10 mil. Kusů v Maďarsku a 100 mil. na světě. Do roku 1982 se prodalo více než 10 mil. Kusů v Maďarsku a 100 mil. na světě. Cílem je složit kostku tak, aby vněší kostky tvořili stejnobarevné stěny. Cílem je složit kostku tak, aby vněší kostky tvořili stejnobarevné stěny. 9 kostiček v každé stěně lze pootáčet. 9 kostiček v každé stěně lze pootáčet. Je konfigurací. Pokryli by Zemi 250x. Je konfigurací. Pokryli by Zemi 250x. V roce 2008 bylo dokázáno, že z jakékoliv pozice lze kostku složit max. 22 otočeními. V roce 2010 jen 20. V roce 2008 bylo dokázáno, že z jakékoliv pozice lze kostku složit max. 22 otočeními. V roce 2010 jen 20. Je i verze 4x4. Je i verze 4x4. Existuje robot na skládání Rubikovy kostky. Existuje robot na skládání Rubikovy kostky.

9 Obsah 5.1 Teorie her jako součást mikroekonomie 5.2 Základní pojmy teorie her a typologie her 5.3 Hry s konstantním součtem – hra v normálním tvaru 5.4 Hry s konstantním součtem – smíšené strategie 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra 5.6 Modelové hry – příklady nekooperativních dvou-maticových her s nekonstantním součtem

10 5.4 Hry s nekonstantním součtem – smíšené strategie. Pokud se ve hrách s konstantním součtem nepodaří najít sedlový prvek, používá se k řešení smíšených „pravděpodobnostních“ strategií. Prostory strategií představují vektory, které určují, s jakou pravděpodobností budou jednotliví hráči volit své strategie. Opět platí, že ten, kdo se odchýlí od rovnovážné strategie, nemůže získat a naopak ztrácí.

11 5.4 Kámen nůžky papír Pokud by nějaký hráč hrál s větší než třetinovou pravděpodobností určitou strategii, tak zbývající hráč má jednoznačnou strategii maximalizace své výhry KNP K01 N 01 P1 0 Hráč 1 Hráč 2

12 5.4 Kámen nůžky papír Pokud by druhý hráč hrál s větší než třetinovou pravděpodobností „kámen“, má první hráč jednoznačnou výherní strategii hrát častěji „papír“. Pokud by druhý hráč hrál s větší než třetinovou pravděpodobností „kámen“, má první hráč jednoznačnou výherní strategii hrát častěji „papír“. KNP K01 N 01 P1 0 >1/3 Hráč 1 Hráč 2 >1/3

13 Co je to hra proti přírodě?

14 Matice užitků A = (a ij )

15 Hra proti přírodě Stánkař může na lidové slavnosti prodávat jen jeden produkt a ví jaké tržby získá v závislosti na počasí. Stánkař může na lidové slavnosti prodávat jen jeden produkt a ví jaké tržby získá v závislosti na počasí. Co bude prodávat?

16 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra. Každý hráč má svou výplatní matici. Strategie (řádek) 1 34 Strategie (řádek) 2-22 Strategie (sloupec) 1 Strategie (sloupec) Matice A hráč 1 Matice B hráč 2

17 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra Spojená matice: Hráč 2 Strategie 1Strategie 2 Hráč 1 Strategie 1 Strategie Modrá max ve sloupcích mat.A Zelená max v řádcích mat.B

18 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra Dominantní (rovnovážná) strategie je pro daného hráče vždy nejvýhodnější, tj. při uplatní jakékoliv strategii zbývajícího hráče.

19 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra Spojená matice: Hráč 2 Strategie 1Strategie 2 Hráč 1 Strategie 1 Strategie Modrá max ve sloupcích mat.A Zelená max v řádcích mat.B

20 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra Spojená matice: Hráč 2 Strategie 1Strategie 2 Hráč 1 Strategie 1 Strategie Modrá max ve sloupcích mat.A Zelená max v řádcích mat.B

21 DÁMA

22 5.6 Modelové hry – příklady nekooperativních dvou-maticových her s nekonstantním součtem The Prisoner’s Dilemma (Vězňovo dilema)The Prisoner’s Dilemma (Vězňovo dilema) The Tragedy of Commons (Tragédie společenského vlastnictví)The Tragedy of Commons (Tragédie společenského vlastnictví) The Free Rider (Černý pasažér)The Free Rider (Černý pasažér) Chicken (Zbabělec)Chicken (Zbabělec) The Volunteer’s Dilemma (Dilema dobrovolníka)The Volunteer’s Dilemma (Dilema dobrovolníka) The Battle of the Sexes (Manželský spor)The Battle of the Sexes (Manželský spor) Stag Hunt (Lov jelena)Stag Hunt (Lov jelena)

23 5.6 Modelové hry – předpoklady nekooperativních dvou-maticových her s nekonstantním součtem základem pro vytvoření dvou-matice je popis herní situace; základem pro vytvoření dvou-matice je popis herní situace; definujeme hráče, jací jsou, jak se chovají; definujeme hráče, jací jsou, jak se chovají; stanovíme dostupné strategie a zdůvodnění, prostoru strategií. stanovíme dostupné strategie a zdůvodnění, prostoru strategií. klíčové je stanovení výplat vázaných na zvolenou strategii pro každého hráče zvlášť. klíčové je stanovení výplat vázaných na zvolenou strategii pro každého hráče zvlášť.

24 Vězňovo dilema Vězňovo dilema Jedná o situaci dvou předběžně zadržených vězňů, kteří „spáchali“ nějaký trestný čin a byli dopadeni. Jedná o situaci dvou předběžně zadržených vězňů, kteří „spáchali“ nějaký trestný čin a byli dopadeni. Při výslechu jsou oba odděleni a mají na výběr dvě možnosti, buď se Při výslechu jsou oba odděleni a mají na výběr dvě možnosti, buď se přiznat, nebo se nepřiznat. přiznat, nebo se nepřiznat. Pro řešení výběru jejich rozhodovací strategie využijeme dvou-matici.

25 Vězňovo dilema Vězňovo dilema NK > KK > NN > KN K – kooperovat (přiznat se) N - nekooperovat (nepřiznat se) Vězeň 2 PřiznatNepřiznat Vězeň 1 Přiznat Nepřiznat

26 Vězňovo dilema Vězňovo dilema Mohou nastat situace, kdy se všechny osoby chovají určitým jednotným způsobem (mají jednoznačnou dominantní strategii) s cílem maximalizovat svůj užitek, avšak všichni jednající si pohorší. Pokud by jednotliví hráči zvolili jinou než pro ně dominantní strategii, tak by na tom byli lépe, než když všichni hráči tuto nejvýhodnější strategii zvolí.

27 Vězňovo dilema Vězňovo dilema NK > KK > NN > KN, kde: 1. symbol znamená strategii nějakého hráče 1. symbol znamená strategii nějakého hráče (jedno zda-li prvního nebo druhého), (jedno zda-li prvního nebo druhého), 2. symbol znamená strategii zbývajícího hráče; 2. symbol znamená strategii zbývajícího hráče; N znamená, že daný hráč nespolupracuje, čili používá nekooperativní strategii (přizná se); N znamená, že daný hráč nespolupracuje, čili používá nekooperativní strategii (přizná se); K znamená, že spolupracuje, tj. použije kooperativní strategii (nepřizná se). K znamená, že spolupracuje, tj. použije kooperativní strategii (nepřizná se). Pro 1. i 2. hráče platí - 1 > -2 > -3 > -4

28 Vězňovo dilema Vězňovo dilema Nashova rovnováha v ryzích strategiích v této hře tedy existuje, ale je pro oba horší, než kdyby se nepřiznali (tj. „spolupracovali“).

29 Vězňovo dilema Se situací typu vězňova dilematu se lze setkat poměrně často, např.: Dvě firmy uzavřely kartelovou dohodu a mohou ji porušit, nebo dodržet. Dvě firmy uzavřely kartelovou dohodu a mohou ji porušit, nebo dodržet. Dvě politické strany uzavřely dohodu o tom, že jejich výdaje na volební kampaň nepřekročí určitou částku a mohou ji porušit, nebo dodržet. Dvě politické strany uzavřely dohodu o tom, že jejich výdaje na volební kampaň nepřekročí určitou částku a mohou ji porušit, nebo dodržet. Dvě velmoci uzavřely dohodu o snížení počtu zbraní a mohou ji porušit, nebo dodržet. Dvě velmoci uzavřely dohodu o snížení počtu zbraní a mohou ji porušit, nebo dodržet.

30 Tragédie společenského vlastnictví Farmáři v Austrálii mají omezené používání vody, protože jsou zde častá sucha. V matici je jeden zemědělec a všichni ostatní. Pokud budou všichni spolupracovat (tj. omezí používání vody), bude užitek obou skupin 5 tun z akru půdy. V případě, že oba (jednotlivec i ostaní) zradí (neomezí používání vody) pak jen 2 tuny. Pokud zradí pouze samostatný farmář, získá 10 a ostatní 5 tun. V opačném případě získá farmář 1 tunu a ostatní 2 tuny.

31 Tragédie společenského vlastnictví Tragédie společenského vlastnictví Ostatní farmáři Nespolupracovat Spolupracovat Jednotlivec Nespolupracov at neomezí používání vody Spolupracov at Řešením je samospráva Spolupráce všech - obě skupiny 5 t. Nespolupráce všech - obě skupiny 2 t. Nespolupráce všech - obě skupiny 2 t. Farmář zradí - získá 10 a ostatní 5 t. Ostatní zradí – farmář má 1, ostatní 2 t.

32 Černý pasažér V tomto příkladu se rozhoduje zda má jednotlivec, přispět na společný cíl, neboť existuje varianta, kdy i bez jeho přispění bude cíle dosaženo. Nová kostelní věž má stát 1 mil. PJ. Každý občan může přispět částkou 1 tis. PJ. Vyčleněný občan zvažuje jaký užitek pro něj má tato věž, cení si ji na 2 tis. PJ. Za jakých okolností bude preferovat spolupráci či užívání výhod bez vlastního přispění? Dvou-matice zobrazuje výplaty z jeho pohledu po odečtení nákladů spolupráce tj PJ a nespolupráce 0 PJ:

33 Černý pasažér Černý pasažér Ostatní občané Více než 1000 občanů spolupracuje Přesně 999 občanů spolupracuje Méně než 999 občanů spolupracuje Konk rétní občan Spolupracov at Nespoluprac ovat200000

34 Kuře, ale spíše zbabělec Dva hráči volí strategii ustoupit od devastujícího rozhodnutí (kooperativní strategie), nebo neustoupit (nekooperativní strategie). Ten, kdo ustoupí, prohrává. Pokud ustoupí oba, nedojde k devastaci, žádný z hráčů však nic nezíská. Například rozhodnutí dvou hochů zamilovaných do stejné dívky, řešící (s jejím vědomím) svůj životní problém tím, že se proti sobě rozjedou autem vysokou rychlostí. Kdo uhne, dívku ztrácí. V případě, že neuhne žádný z nich, ztrácí ovšem oba svůj život.

35 Kuře, ale spíše zbabělec NK > KK > KN > NN K – kooperovat (ustoupit) N - nekooperovat (neustoupit) Hráč 2 UstoupitNeustoupit Hráč 1 Ustoupit Neustou pit

36 Dilema dobrovolníka Je to obdoba modelu zbabělec, avšak s více hráči. Jednotlivec proti skupině. Je to obdoba modelu zbabělec, avšak s více hráči. Jednotlivec proti skupině. Například krajní situaci, kdy je společně nějaká skupina lidí na záchranném člunu, do kterého zatéká. Pokud jeden z této skupiny skočí přes palubu, zachrání tím ostatní, ale sám zřejmě zahyne. Například krajní situaci, kdy je společně nějaká skupina lidí na záchranném člunu, do kterého zatéká. Pokud jeden z této skupiny skočí přes palubu, zachrání tím ostatní, ale sám zřejmě zahyne.

37 Dilema dobrovolníka Ostatní SpolupracovatNespolupracovat Jeden ze skupi ny Spolupraco vat Ostatní získají, ale dobrovolníci mají náklady Ostatní získají, ale dobrovolník má náklady Nespolupra covat Všichni kromě dobrovolníků získají, ale konkrétní nespolupracující jednotlivec nemá náklady Velká ztráta

38 Dilema dobrovolníka Pro každého člena skupiny je nejvýhodnější, pokud se obětuje někdo jiný. Pokud se nikdo neobětuje, všichni zahynou. Zobecnění této herní situace: pro každého hráče je nejvýhodnější, aby nějaký jiný hráč něco udělal, přičemž daný čin může udělat kterýkoliv z nich. Jde o vyhrocený konflikt individualistické a kooperativní společnosti. Co je víc? Společnost nebo jedinec. „mamihlapinatapai“

39 Manželský spor Manželé mohou strávit večer společně, ale každý z nich má jiné představy o tom jak. Manžel chce jít na fotbalový zápas a žena na nákupy. Oba manželé spolu rádi tráví čas a mají alespoň nějaký užitek ze společného večera, i když není vybrána jejich preference, než z večera, kdy je každý z manželů sám. Každý z manželů se rozhoduje samostatně.

40 Manželský spor VN > NV > VV = NN V – výhodná N - nevýhodná Manželka Manželka KopanáNákupy Manžel Kopaná Nákupy

41 Manželský spor Existují dvě rovnovážná řešení - celkem tedy dva sedlové prvky [1;1] a [2;2] s výplatami (2;1) a (1;2). Pokud bude muž teoreticky volit pro sebe výhodnější první sloupec, ale žena pro sebe výhodnější druhý řádek, tak bude paradoxně výsledkem výplata (0;0)

42 Lov na jelena Jde o opačnou verzi Vězňova dilematu, kde kooperace je dominantní strategií, respektive, kde se ani jednomu z hráčů nevyplácí podvádět a volí spolupráci. Hráči mohou sami ulovit zajíce, nebo ve spolupráci jelena (jelena lze ulovit pouze spoluprací dvou hráčů). Jelen přitom přináší oběma hráčům (tj. každému z hráčů) větší užitek než zajíc.

43 Lov na jelena KK > NK > NN > KN K – kooperovat N - nekooperovat Lovec 2 Lov zajíce Lov jelena Lovec 1 Lov zajíce Lov jelena

44 Lov na jelena Nashova rovnováha nastává v pravém dolním rohu matice s výplatami (16;16). Přestože existují dva sedlové prvky, dominantní strategií bude lov jelena. Lovem jelena získají oba hráči nejvyšší výplatu. Pokud pouze jeden z hráčů loví jelena, ztrácí tento hráč vše, lovem zajíce však (nespolupracující) jednotlivec získává méně než spoluprací při lovu jelena.

45 Jižní Pacifik 1943: Generál Imamura má za úkol transport japonského vojska přes Bismarckovo moře do Nové Guinei. Generál Kenney chce transporty bombardovat. Imamura si musí vybrat mezi kratší severní a delší jižní trasou. Kenney musí rozhodnout kam má poslat letadla aby našla konvoj. Bitva o Bismarckovo moře

46 strategie Imamura severní (kratší) jižní (delší) Kenney severní jižní Jižní Pacifik březen 1943:

47 Děkuji za pozornost. Teoretický seminář VŠFS Jiří Mihola

48

49


Stáhnout ppt "Teorie her pro manažery Teorie her- VŠFS Jiří Mihola, 2013 Téma 2."

Podobné prezentace


Reklamy Google