Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Teorie her pro manažery

Podobné prezentace


Prezentace na téma: "Teorie her pro manažery"— Transkript prezentace:

1 Teorie her pro manažery
Mikroekonomie magisterský kurz - VŠFS Jiří Mihola, , 2010 Téma 1 Teorie her pro manažery

2 Obsah 5.1 Teorie her jako součást mikroekonomie
5.2 Základní pojmy teorie her a typologie her 5.3 Hry s konstantním součtem – hra v normálním tvaru 5.4 Hry s konstantním součtem – smíšené strategie 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra 5.6 Modelové hry – příklady nekooperativních dvou-maticových her s nekonstantním součtem

3 5.4 Hry s nekonstantním součtem – smíšené strategie.
Pokud se ve hrách s konstantním součtem nepodaří najít sedlový prvek, používá se k řešení smíšených „pravděpodobnostních“ strategií. Prostory strategií představují vektory, které určují, s jakou pravděpodobností budou jednotliví hráči volit své strategie. Opět platí, že ten, kdo se odchýlí od rovnovážné strategie, nemůže získat a naopak ztrácí.

4 5.4 Kámen nůžky papír Hráč 2 K N P 1 -1 Hráč 1 Pokud by nějaký hráč hrál s větší než třetinovou pravděpodobností určitou strategii, tak zbývající hráč má jednoznačnou strategii maximalizace své výhry

5 5.4 Kámen nůžky papír Hráč 2 >1/3 K N P 1 -1 Hráč 1 >1/3 Pokud by druhý hráč hrál s větší než třetinovou pravděpodobností „kámen“, má první hráč jednoznačnou výherní strategii hrát častěji „papír“.

6 Co je to hra proti přírodě?

7 Co je to hra proti přírodě?
Matice užitků A = (aij)

8 Hra proti přírodě Stánkař může na lidové slavnosti prodávat jen jeden produkt a ví jaké tržby získá v závislosti na počasí. Co bude prodávat?

9 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra .
Každý hráč má svou výplatní matici. Strategie (řádek) 1 3 4 Strategie (řádek) 2 -2 2 Matice A hráč 1 Strategie (sloupec) 1 Strategie (sloupec) 2 5 2 7 1 Matice B hráč 2

10 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra
Spojená matice: Modrá max ve sloupcích mat.A Zelená max v řádcích mat.B Hráč 2 Strategie 1 Strategie 2 Hráč 1 3 5 4 2 -2 7 2 1

11 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra
Dominantní (rovnovážná) strategie je pro daného hráče vždy nejvýhodnější, tj. při uplatní jakékoliv strategii zbývajícího hráče.

12 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra
Spojená matice: Modrá max ve sloupcích mat.A Zelená max v řádcích mat.B Hráč 2 Strategie 1 Strategie 2 Hráč 1 3 9 -2 1 -2 6 4

13 5.5 Hry s nekonstantním součtem - nekooperativní dvou-maticová hra
Spojená matice: Modrá max ve sloupcích mat.A Zelená max v řádcích mat.B Hráč 2 Strategie 1 Strategie 2 Hráč 1 3 5 2 -1 4 1 -2 5

14 The Prisoner’s Dilemma (Vězňovo dilema)
5.6 Modelové hry – příklady nekooperativních dvou-maticových her s nekonstantním součtem The Prisoner’s Dilemma (Vězňovo dilema) The Tragedy of Commons (Tragédie společenského vlastnictví) The Free Rider (Černý pasažér) Chicken (Zbabělec) The Volunteer’s Dilemma (Dilema dobrovolníka) The Battle of the Sexes (Manželský spor) Stag Hunt (Lov jelena)

15 základem pro vytvoření dvou-matice je popis herní situace;
5.6 Modelové hry – předpoklady nekooperativních dvou-maticových her s nekonstantním součtem základem pro vytvoření dvou-matice je popis herní situace; definujeme hráče, jací jsou, jak se chovají; stanovíme dostupné strategie a zdůvodnění, prostoru strategií. klíčové je stanovení výplat vázaných na zvolenou strategii pro každého hráče zvlášť.

16 Vězňovo dilema Jedná o situaci dvou předběžně zadržených vězňů, kteří „spáchali“ nějaký trestný čin a byli dopadeni. Při výslechu jsou oba odděleni a mají na výběr dvě možnosti, buď se přiznat, nebo se nepřiznat. Pro řešení výběru jejich rozhodovací strategie využijeme dvou-matici.

17 Vězňovo dilema -3 -1 -4 -4 -1 -2 Vězeň 2 Přiznat Nepřiznat Vězeň 1
NK > KK > NN > KN K – kooperovat (přiznat se) N - nekooperovat (nepřiznat se) Vězeň 2 Přiznat Nepřiznat Vězeň 1 -3 -1 -4 -4 -1 -2

18 Vězňovo dilema Mohou nastat situace, kdy se všechny osoby chovají určitým jednotným způsobem (mají jednoznačnou dominantní strategii) s cílem maximalizovat svůj užitek, avšak všichni jednající si pohorší. Pokud by jednotliví hráči zvolili jinou než pro ně dominantní strategii, tak by na tom byli lépe, než když všichni hráči tuto nejvýhodnější strategii zvolí.

19 Vězňovo dilema NK > KK > NN > KN, kde:
1. symbol znamená strategii nějakého hráče (jedno zda-li prvního nebo druhého), 2. symbol znamená strategii zbývajícího hráče; N znamená, že daný hráč nespolupracuje, čili používá nekooperativní strategii (přizná se); K znamená, že spolupracuje, tj. použije kooperativní strategii (nepřizná se). Pro 1. i 2. hráče platí - 1 > -2 > -3 > -4

20 (tj. „spolupracovali“).
Vězňovo dilema Nashova rovnováha v ryzích strategiích v této hře tedy existuje, ale je pro oba horší, než kdyby se nepřiznali (tj. „spolupracovali“).

21 Vězňovo dilema Se situací typu vězňova dilematu
se lze setkat poměrně často, např.: Dvě firmy uzavřely kartelovou dohodu a mohou ji porušit, nebo dodržet. Dvě politické strany uzavřely dohodu o tom, že jejich výdaje na volební kampaň nepřekročí určitou částku a mohou ji porušit, nebo dodržet. Dvě velmoci uzavřely dohodu o snížení počtu zbraní a mohou ji porušit, nebo dodržet.

22 Tragédie společenského vlastnictví
Farmáři v Austrálii mají omezené používání vody, protože jsou zde častá sucha. V matici je jeden zemědělec a všichni ostatní. Pokud budou všichni spolupracovat (tj. omezí používání vody), bude užitek obou skupin 5 tun z akru půdy. V případě, že oba (jednotlivec i ostaní) zradí (neomezí používání vody) pak jen 2 tuny. Pokud zradí pouze samostatný farmář, získá 10 a ostatní 5 tun. V opačném případě získá farmář 1 tunu a ostatní 2 tuny.

23 Tragédie společenského vlastnictví
Ostatní farmáři Nespolupracovat Spolupracovat Jednotlivec neomezí používání vody 2 10 5 1 2 5 Řešením je samospráva

24 Černý pasažér V tomto příkladu se rozhoduje zda má jednotlivec, přispět na společný cíl, neboť existuje varianta, kdy i bez jeho přispění bude cíle dosaženo. Nová kostelní věž má stát 1 mil. PJ. Každý občan může přispět částkou 1 tis. PJ. Vyčleněný občan zvažuje jaký užitek pro něj má tato věž, cení si ji na 2 tis. PJ. Za jakých okolností bude preferovat spolupráci či užívání výhod bez vlastního přispění? Dvou-matice zobrazuje výplaty z jeho pohledu po odečtení nákladů spolupráce tj PJ a nespolupráce 0 PJ:

25 Černý pasažér 1000 -1000 2000 Ostatní občané Konkrétní občan
Více než 1000 občanů spolupracuje Přesně 999 občanů spolupracuje Méně než 999 občanů spolupracuje Konkrétní občan Spolupracovat 1000 -1000 Nespolupracovat 2000

26 Kuře, ale spíše zbabělec
Dva hráči volí strategii ustoupit od devastujícího rozhodnutí (kooperativní strategie), nebo neustoupit (nekooperativní strategie). Ten, kdo ustoupí, prohrává. Pokud ustoupí oba, nedojde k devastaci, žádný z hráčů však nic nezíská. Například rozhodnutí dvou hochů zamilovaných do stejné dívky, řešící (s jejím vědomím) svůj životní problém tím, že se proti sobě rozjedou autem vysokou rychlostí. Kdo uhne, dívku ztrácí. V případě, že neuhne žádný z nich, ztrácí ovšem oba svůj život.

27 Kuře, ale spíše zbabělec
NK > KK > KN > NN K – kooperovat (ustoupit) N - nekooperovat (neustoupit) Hráč 2 Ustoupit Neustoupit Hráč 1 -5 5 5 -5 -10

28 Dilema dobrovolníka Je to obdoba modelu zbabělec, avšak s více hráči. Jednotlivec proti skupině. Například krajní situaci, kdy je společně nějaká skupina lidí na záchranném člunu, do kterého zatéká. Pokud jeden z této skupiny skočí přes palubu, zachrání tím ostatní, ale sám zřejmě zahyne.

29 Ostatní Dilema dobrovolníka Jeden ze skupiny Velká ztráta
Spolupracovat Nespolupracovat Jeden ze skupiny Ostatní získají, ale dobrovolníci mají náklady Ostatní získají, ale dobrovolník má náklady Všichni kromě dobrovolníků získají, ale konkrétní nespolupracující jednotlivec nemá náklady Velká ztráta

30 Co je víc? Společnost nebo jedinec.
Dilema dobrovolníka Pro každého člena skupiny je nejvýhodnější, pokud se obětuje někdo jiný. Pokud se nikdo neobětuje, všichni zahynou. Zobecnění této herní situace: pro každého hráče je nejvýhodnější, aby nějaký jiný hráč něco udělal, přičemž daný čin může udělat kterýkoliv z nich. Jde o vyhrocený konflikt individualistické a kooperativní společnosti. Co je víc? Společnost nebo jedinec. „mamihlapinatapai“

31 Manželský spor Manželé mohou strávit večer společně, ale každý z nich má jiné představy o tom jak. Manžel chce jít na fotbalový zápas a žena na nákupy. Oba manželé spolu rádi tráví čas a mají alespoň nějaký užitek ze společného večera, i když není vybrána jejich preference, než z večera, kdy je každý z manželů sám. Každý z manželů se rozhoduje samostatně.

32 Manželský spor Manželka Manžel 2 1 1 2 VN > NV > VV = NN
V – výhodná N - nevýhodná Manželka Kopaná Nákupy Manžel 2 1 1 2

33 Manželský spor Existují dvě rovnovážná řešení - celkem tedy dva sedlové prvky [1;1] a [2;2] s výplatami (2;1) a (1;2). Pokud bude muž teoreticky volit pro sebe výhodnější první sloupec, ale žena pro sebe výhodnější druhý řádek, tak bude paradoxně výsledkem výplata (0;0)

34 Lov na jelena Jde o opačnou verzi Vězňova dilematu, kde kooperace je dominantní strategií, respektive, kde se ani jednomu z hráčů nevyplácí podvádět a volí spolupráci. Hráči mohou sami ulovit zajíce, nebo ve spolupráci jelena (jelena lze ulovit pouze spoluprací dvou hráčů). Jelen přitom přináší oběma hráčům (tj. každému z hráčů) větší užitek než zajíc.

35 Lov na jelena K – kooperovat N - nekooperovat Lovec 2 Lovec 1 2 5 5 16
KK > NK > NN > KN K – kooperovat N - nekooperovat Lovec 2 Lov zajíce Lov jelena Lovec 1 2 5 5 16

36 Lov na jelena Nashova rovnováha nastává v pravém dolním rohu matice s výplatami (16;16). Přestože existují dva sedlové prvky, dominantní strategií bude lov jelena. Lovem jelena získají oba hráči nejvyšší výplatu. Pokud pouze jeden z hráčů loví jelena, ztrácí tento hráč vše, lovem zajíce však (nespolupracující) jednotlivec získává méně než spoluprací při lovu jelena.

37 Bitva o Bismarckovo moře
Jižní Pacifik 1943: Generál Imamura má za úkol transport japonského vojska přes Bismarckovo moře do Nové Guinei. Generál Kenney chce transporty bombardovat. Imamura si musí vybrat mezi kratší severní a delší jižní trasou. Kenney musí rozhodnout kam má poslat letadla aby našla konvoj.

38 Bitva o Bismarckovo moře
Jižní Pacifik březen 1943: strategie Imamura severní (kratší) jižní (delší) Kenney 2 -2 -2 2 -1 1 3 -3

39 Děkuji za pozornost. Jiří Mihola jiri.mihola@quick.cz www.median-os.cz
Teoretický seminář VŠFS Jiří Mihola Děkuji za pozornost.


Stáhnout ppt "Teorie her pro manažery"

Podobné prezentace


Reklamy Google