Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Přechodné prvky. Společné vlastnosti Typické je pro ně zaplňování vnitřních AO typu d a v případě lanthanoidů a aktinoidů zaplňování vnitřních AO typu.

Podobné prezentace


Prezentace na téma: "Přechodné prvky. Společné vlastnosti Typické je pro ně zaplňování vnitřních AO typu d a v případě lanthanoidů a aktinoidů zaplňování vnitřních AO typu."— Transkript prezentace:

1 Přechodné prvky

2

3 Společné vlastnosti Typické je pro ně zaplňování vnitřních AO typu d a v případě lanthanoidů a aktinoidů zaplňování vnitřních AO typu f. Obecně platí pořadí zaplňování AO n s 2 < (n-2 f 14 ) < n-1 d 10 < n p 6, v konkrétních případech je však několik odchylek v pořadí (vlivy druhého řádu)

4 Společné vlastnosti Dále je pro přechodné prvky typické, že všechny jsou kovy a většinou tvoří sloučeniny více oxidačních stavů. Proti nepřechodným prvkům je však opačný trend ve stálosti vyšších oxidačních stavů (u přechodných jsou vyšší oxidační stavy stálejší u těžších prvků).

5 Společné vlastnosti Elektronegativita přechodných prvků je v rozmezí 1,0 až 1,8, takže s nekovy tvoří iontové nebo kovalentní polární vazby. Pro přechodné prvky je také typická tvorba komplexních sloučenin.

6 Společné vlastnosti Protože průměr atomu (i iontu) je dán obsazenou valenční sférou a u přechodných prvků se obsazují vnitřní AO, jejich průměr (atomů nebo odpovídajících si iontů) se v rámci periody (obsazování stejného vnitřního AO při zvyšujícím se náboji jádra) zmenšuje.

7 Společné vlastnosti Mírné to je u obsazování AO typu d (Ti pm, Zn pm), výrazné pak u lanthanoidů při obsazování AO typu f (La pm, Lu pm) lanthanoidová kontrakce Důsledkem jsou velmi podobné průměry (i vlastnosti) d-prvků 5. a 6. periody.

8

9 Obsah kovů v zemské kůře (%)

10 Celosvětová spotřeba kovů (tuny/rok)

11 Obecné metody výroby kovů Těžba rudy Ruda – technický název pro nerost nebo směs nerostů, z níž lze v průmyslovém měřítku ekonomicky dobývat příslušný kov Obsah kovu v rudě velmi různý Železo – 35 až 70 % Zlato – 5 g/t, v rýžovištích až 0,1 g/t

12 Separace a obohacení rudy Mechanické separační postupy Drcení, plavení, flotace, sedimentace, magnetické třídění Chemické separační postupy Loužení, pražení, spékání, hrudkování

13 Chemický děj vedoucí k získání kovu Redukce uhlíkem (Fe, Mn, Co, Ni, Zn, Sn) Fe 3 O C → 3 Fe + 2 CO 2 Redukce oxidem uhelnatým (Fe, Ni) Fe 3 O CO → 3 Fe + 4 CO 2 Redukce vodíkem (W, Mo) WO H 2 → W + 3 H 2 O

14 Chemický děj vedoucí k získání kovu Redukce kovy (Cr, V, Ti..) Cr 2 O Al → 2 Cr + Al 2 O 3 2 V 2 O Si → 4 V + 5 SiO 2 TiCl Mg → Ti + 2 MgCl 2 NbCl Na → Nb + 5 NaCl 2 LaF Ca → 2 La + 3 CaF 2

15 Tepelný rozklad (Ni, Zr, Ba, Hg) [Ni(CO) 4 ] → Ni + 4 CO ZrI 4 → Zr + 2 I 2 Elektrolýza tavenin (Al, Ca, Na, Li..) Elektrolýza roztoků (Cu, Au, Zn) Chemický děj vedoucí k získání kovu

16 Rafinační pochody Destilace (sloučenin nebo kovů) Extrakce nečistot Rekrystalizace rozpustných solí Elektrolýza Pásmové tavení Dělení na katexech

17 Skandium, yttrium, lanthan a aktinium

18 Společné vlastnosti Konfigurace jejich valenční sféry (n-1)d 1 ns 2, všechny sloučeniny M +III Nejběžnějšími sloučeninami jsou oxidy M 2 O 3, které se dobře rozpouštějí v kyselinách na dobře krystalizující a definované soli. Hydroxidy M(OH) 3 jsou ve vodě nerozpustné.

19 Skandium Skandium se vyrábí ve velmi omezeném množství z odpadů jiných výrob (např. výroby uranu) a prakticky nemá technické využití

20 Yttrium Yttrium bylo objeveno v minerálu z norské vesnice Ytterby (později i další prvky ytterbium, terbium a erbium), dnes se získává z xenotimu YPO 4, bastnezitu (Ce, La...)CO 3 F a monazitu (Ce, La, Th)PO 4, které obsahují v různém množství i lanthanoidy

21 Yttrium Yttrium má určitý průmyslový význam v mikroelektronice pro přípravu speciálních materiálů (luminofory, yttriový granát pro radarové a mikrovlnné technologie)

22 Lanthan Lanthan se vyskytuje v monazitu (Ce, La, Th)PO 4 a používá se při výrobě speciálních optických skel s vysokým indexem lomu a akumulátorů Ni-MH (obsahují slitinu LaNi 5 a při nabíjení vzniká hydrid LaNi 5 H 5 )

23 Aktinium Aktinium je vysoce radioaktivní (t 1/2 = 22 let) a vzniká rozpadem 235 U (1 tuna přírodního uranu obsahuje 0,2 mg Ac) Aktinium nemá žádný praktický význam

24 Lanthanoidy

25 Společné vlastnosti Skupina prvků s velmi podobnými chemickými vlastnostmi, velmi obtížně dělitelná. Typické oxidační číslo M +III, některé se vyskytují i v dalších oxidačních stavech a toho se využívá při dělení (M +II Sm, Eu, Yb; M +IV Ce, Pr, Tb).

26 Společné vlastnosti Lanthanoidy se vyskytují společně s Y, La a Th v xenotimu YPO 4, bastnezitu (Ce, La...)CO 3 F a monazitu (Ce, La, Th)PO 4, ze kterých se získávají složitými postupy (extrakce a chromatografické dělení). Europium je radioaktivní a v přírodě se nevyskytuje.

27 Společné vlastnosti Nejběžnějšími sloučeninami jsou oxidy M 2 O 3, které se dobře rozpouštějí v kyselinách na dobře krystalizující a definované soli. Hydroxidy M(OH) 3 jsou ve vodě nerozpustné. Pouze u ceru má význam CeO 2 a soli ceričité se silnými oxidačními vlastnostmi.

28 Využití lanthanoidů Lanthanoidy se používají jako směs pro speciální slitiny a dále individuální látky pro speciální použití v elektronice, laserové a televizní technice. CeO 2 se využívá při leštění optických skel.

29 Aktinoidy

30

31

32 Historie 1789 Klaproth izoloval z jáchymovského smolince sloučeniny uranu a potvrdil uran jako nový prvek, čistý kovový uran byl připraven Berzelius získal z thoritu thorium a potvrdil ho jako nový prvek 1913 zjištěno v přírodě protaktinium jako člen rozpadové řady uranu 238 U 1940 a dále příprava dalších aktinoidů jadernými reakcemi

33 Společné vlastnosti Proti skupině lanthanoidů jsou aktinoidy vzájemně mnohem rozdílnější. Vzhledem k tomu, že všechny jsou radioaktivní a praktický význam mají pouze thorium, uran a plutonium, ostatní aktinoidy nebudou podrobněji probírány.

34 Thorium Přírodní thorium obsahuje pouze jeden izotop ( 232 Th), který je radioaktivní a je výchozím izotopem thoriové rozpadové řady. Vzhledem k poměrně pomalému rozpadu (t 1/2 = 1, roku) thorium pochází z období vzniku Země

35 Thorium Thorium se získává spolu s lanthanoidy z monazitu a ve svých sloučeninách má vždy oxidační číslo +IV. Použití Th (s Ce) je na punčošky plynových lamp (Augerovy punčošky). Výhledově se počítá s využitím Th jako jaderného paliva.

36 Thorium Nejdůležitější sloučeninou je ThO 2, který je mimořádně tepelně stálý (b.t °C) a lze ho použít na speciální keramiku. Dalšími významnými sloučeninami jsou halogenidy ThX 4 a dusičnan Th(NO 3 ) 4.

37 Uran Přírodní uran obsahuje dva hlavní izotopy, 235 U (t 1/2 = roku) (0,7 %) a 238 U (t 1/2 = 4, roku) Vzhledem k poměrně pomalému rozpadu oba izotopy pocházejí z období vzniku Země, dobou se však jejich poměr měnil

38 Uran Hlavní rudou uranu je uraninit (smolinec), U 3 O 8 (U +IV O 2. 2 U +VI O 3 ). Proces výroby čistého kovu je značně složitý. Primárně se sloučeniny uranu používaly na barvení skla (výroba v Jáchymově), nově je hlavní použití jako jaderné palivo (po velmi složitém obohacení obsahu 235 U)

39 Uran Uran tvoří sloučeniny s oxidačními stupni +III až +VI, nejstabilnější jsou +VI. Ve vodném prostředí jsou stabilní pouze sloučeniny s oxidačními čísly +IV a +VI.

40 Uran Nejdůležitějšími oxidy jsou UO 2 a UO 3. UO 2 reaguje s HF za vzniku UF 4. UO 3 se rozpouští v kyselinách za vzniku solí uranylu UO 2 2+ žluté barvy nebo reaguje s uhličitanem sodným za vzniku diurananu Na 2 U 2 O 7.

41 Uran Fluorací UF 4 vzniká těkavý UF 6, který se používá pro obohacování 235 U v centrifugách nebo tepelnou difúzí.

42 Plutonium Vzniká jako produkt jaderných reakcí v jaderných reaktorech, izotop 239 Pu má t 1/2 = 2, roku a je použitelný jako štěpný materiál jak do jaderných reaktorů, tak do atomových bomb (Nagasaki).

43 Plutonium Sloučeniny plutonia se vyskytují v řadě oxidačních stupňů +III až +VI, hlavně však +IV (PuO 2 ) nebo +VI (PuF 6, sloučeniny plutonylu PuO 2 2+ ). Sloučeniny plutonia jsou mimořádně jedovaté.

44 Titan, zirkonium, hafnium

45 Historie 1791 Gregor (farář z Cornwallu) rozložil ilmenit (FeTiO 3 ) a připravil přes síran TiO 2, postup se používá dosud Berzelius připravil kovy titan a zirkonium 1922 Coster a Hevesy prokázali hafnium jako nový prvek

46 Výskyt Titan – obsah 0,63 % (9.) v zemské kůře, hlavní minerály rutil TiO 2 a ilmenit FeTiO 3 Zirkonium – obsah 0,016 %, hlavní minerály zirkon ZrSiO 4 a baddeleyit ZrO 2 Hafnium – 1/50 obsahu zirkonia, vždy doprovází zirkonium v minerálech

47 Výroba Titan – rozklad rutilu nebo ilmenitu koncentrovanou H 2 SO 4, zředěním vypadává TiO 2 čistý titan se připravuje přes TiCl 4, přímou redukcí uhlíkem vznikají velmi odolné karbidy

48 Výroba Krollova metoda TiO Cl 2 + C  TiCl 4 + CO 2 TiCl Mg  Ti + 2 MgCl 2 Použití Kov do slitin s velmi dobrými vlastnostmi a poloviční hmotností proti slitinám železa (kosmonautika, letecký průmysl apod.)

49 Výroba Zirkonium výroba kovu minimální, pouze pro speciální slitiny pro jadernou energetiku Hafnium nemá praktický význam

50 Vlastnosti prvků Všechny tři kovy jsou velmi reaktivní, ale masivní kovy (i jejich slitiny) se pokrývají vrstvou oxidů, která brání další oxidaci Kovy za studena nereagují ani s koncentrovanými kyselinami nebo louhy. Za horka reaguje Ti s koncentrovanou HCl, všechny kovy se rozpouštějí až ve směsi HNO 3 + HF.

51 Sloučeniny Nejstálejší jsou sloučeniny s oxidačním číslem +IV, v roztoku jsou však částice TiO 2+ (titanyl) a ZrO 2+ (zirkonyl) u titanu lze připravit i titanité soli s oxidačním číslem +III, které mají velmi silné redukční vlastnosti a oxidují se již vzdušným kyslíkem (použití v titanometrii)

52 Sloučeniny titanu Oxid titaničitý TiO 2 – bílý prášek nejdůležitější sloučenina titanu, vyskytuje se ve dvou hlavních modifikacích Rutil – stabilní Anatas – metastabilní, přechází na rutil při ohřevu (nad cca 700 °C) Brookit – pouze v přírodě, vznik za speciálních podmínek

53 Sloučeniny titanu Anatas a rutil Podle podmínek přípravy a teploty tepelného zpracování vykazují nanočástice TiO 2 fotosenzitivní a hlavně fotokatalytické vlastnosti Použití bílý pigment, plnidlo kaučuku, plastů a papíru, nanočástice pro fotokatalytické vrstvy

54 Sloučeniny titanu Z dalších sloučenin titanu má význam TiCl 4, kapalina okamžitě hydrolyzující i stopami vody TiCl H 2 O  TiO HCl

55 Sloučeniny zirkonia Oxid zirkoničitý je velmi odolný jak tepelně, tak chemicky Použití Tavený oxid zirkoničitý (t.t °C) s oxidem hlinitým a oxidem křemičitým se používá na nejexponovanější části sklářských pecí

56 Vanad, niob, tantal

57 Výskyt Vanad – obsah v zemské kůře na úrovni zinku, asi 60 minerálů (vanadičnanů), hlavní vanadinit Pb 5 Cl(VO 4 ) 3 Niob a tantal – obsah nízký, hlavní minerály tantalit a kolumbit, prakticky vždy spolu

58 Vlastnosti prvků Konfigurace ns 2 (n-1)d 3 Kovy nemají (mimo malého množství speciálních slitin) praktický význam Pro vanad mají významné sloučeniny oxidační číslo +IV (VCl 4, VO 2+ vanadyl) a +V (oxid V 2 O 5 ), u Nb a Ta je dominantní oxidační číslo +V.

59 Vlastnosti sloučenin Nejdůležitější sloučeninou vanadu je oxid V 2 O 5, žlutooranžový prášek Ve velmi kyselém prostředí se rozpouští za vzniku kationtu VO 2 +, v neutrálních a v zásaditých roztocích aniontu VO 4 3- (vanadičnanového) a polyvanadičnanů Použití velmi významný katalyzátor (výroba H 2 SO 4 )

60 Vlastnosti sloučenin Z dalších sloučenin vanadu jsou významné chlorid VCl 4 (červenohnědá lehce hydrolyzovatelná kapalina) a vanadičnany (např. málo rozpustný (NH 4 )VO 3 ) Niob a tantal hlavními sloučeninami jsou oxidy Nb 2 O 5 a Ta 2 O 5, sloučeniny („niobičnany a tantaličnany“) jsou podvojné oxidy

61 Chrom, molybden, wolfram

62 Výskyt Chrom – obsah v zemské kůře 0,02 %, hlavní minerál chromit FeCr 2 O 4 Molybden – obsah nízký (1/100 Cr), hlavní minerál molybdenit MoS 2 Wolfram – obsah obdobný Mo, hlavní minerály wolframit (Fe,Mn)WO 4 a scheelit CaWO 4

63 Vlastnosti prvků Konfigurace ns 2 (n-1)d 4 Pro chrom mají významné sloučeniny oxidační číslo +III a +VI, omezeně i +II. Pro Mo a W je dominantní oxidační číslo +VI, omezeně +IV a +V.

64 Výroba kovů Chrom Redukcí chromitu uhlíkem vzniká ferochrom, který se přímo používá pro výrobu nerezavějících ocelí Tavením chromitu s NaOH vzniká chroman, ze kterého se získávají ostatní sloučeniny nebo elektrolyticky čistý chrom.

65 Výroba kovů Molybden Oxidací MoS 2 vzniká MoO 3, který se čistí sublimací a na kov se redukuje vodíkem. Wolfram Redukcí uhlíkem se připravuje ferowolfram, který se přímo používá pro výrobu nástrojových ocelí.

66 Použití kovů Chrom Nerezové oceli, elektrolytické chromování Molybden a wolfram Speciální oceli (nástrojové, pancéře apod.).

67 Vlastnosti sloučenin Chrom Sloučeniny +II mají mimořádné redukční vlastnosti, oxidují se již vzdušným kyslíkem (odstraňování stop kyslíku, CrCl 2 ) Sloučeniny +III s kationtem Cr 3+ nebo (hlavně) odpovídajícími komplexy s koordinačním číslem 6, v kyselém prostředí stabilní, Cr 2 O 3 zelený pigment

68 Vlastnosti sloučenin Chrom Sloučeniny +IV málo významné, pouze CrO 2 vyráběný speciálními postupy se používá jako vynikající ferromagnetikum pro záznamová media (magnetofonové pásky)

69 Vlastnosti sloučenin Chrom Sloučeniny +VI mají silné oxidační vlastnosti, zvláště v kyselém prostředí (kyselina chromsírová). Základními sloučeninami jsou žluté chromany, např. Na 2 CrO 4, nebo oranžové dichromany K 2 Cr 2 O 7. Sloučeniny Cr +VI mají prokazatelně karcinogenní účinky.

70 Vlastnosti sloučenin Molybden Nižší oxidační stavy Mo jsou nestabilní, hlavní sloučeninou je slabě žlutý MoO 3. Charakteristickým rysem je tvorba polymolybdenanů, např. (NH 4 ) 6 Mo 7 O 24, solí heteropolykyselin, např. (NH 4 ) 3 PMo 12 O 40 a molybdenových modří a bronzů.

71 Vlastnosti sloučenin Mo 7 O PMo 12 O 40 3-

72 Vlastnosti sloučenin Molybdenové modři a bronzy Redukcí molybdenanů nebo suspenze MoO 3 ve vodném prostředí (pH > 7) vznikají intenzivně modré produkty MoO 3-x, ve kterých je přítomen v různých poměrech Mo VI a Mo V Obdobně redukcí vodíkem v přítomnosti alkálií vznikají barevné bronzy M x MoO 3 s elektrickou vodivostí jako kovy

73 Vlastnosti sloučenin Wolfram Nižší oxidační stavy W jsou nestabilní, hlavní sloučeninou je WO 3. Charakteristickým rysem je tvorba polywolframanů podobných polymolybdenanům a wolframových bronzů M x WO 3 (M = Li, Na, K) různých barev (pigmenty, elektrotechnika)

74 Mangan, technecium, rhenium

75 Výskyt Mangan – obsah v zemské kůře 0,1 %, hlavní minerály pyroluzit (burel MnO 2 a rhodochrozit MnCO 3 ), třetí nejrozšířenější přechodný kov Technecium – radioaktivní Rhenium – obsah mimořádně malý ( %),příměs v molybdenitu

76 Vlastnosti prvků Konfigurace ns 2 (n-1)d 5 Pro mangan existují sloučeniny s oxidačními čísly –I až +VII, významné sloučeniny jsou s +II, +IV, +VI a +VII Pro Tc a Re je dominantní oxidační číslo +VII

77 Výroba Mangan – redukcí surovin Mn a Fe uhlíkem se vyrábí feromangan, používaný v ocelářství čistý mangan se připravuje elektrolyticky ze síranu a dále se zpracovává na další látky

78 Vlastnosti sloučenin Mangan Sloučeniny +II jako soli nebo kationt 6 [Mn(H 2 O) 6 ] 2+ (slabě růžový), ve vodném kyselém prostředí jsou stabilní, v zásaditém se oxidují již vzdušným kyslíkem na Mn 2 O 3 až MnO 2

79 Vlastnosti sloučenin Mangan Sloučeniny +III oxidační stav +III se vyskytuje v oxidu Mn 3 O 4, který vzniká zahříváním všech sloučenin Mn na vysoké teploty a je formulován jako Mn +II Mn +III 2 O 4 (struktura spinelu, viz dále)

80 Vlastnosti sloučenin Mangan Sloučeniny +IV nejrozšířenější sloučeninou je MnO 2 (burel, černohnědý prášek), který je v neutrálním a alkalickém prostředí stabilní V kyselém prostředí má MnO 2 oxidační vlastnosti 2 MnO H 2 SO 4 → 2 MnSO 4 + O H 2 O MnO 2 + H 2 SO 4 + H 2 O 2 → MnSO 4 + O H 2 O MnO HCl → MnCl 2 + Cl H 2 O

81 Vlastnosti sloučenin Mangan Sloučeniny +VI vznikají mírnou redukcí manganistanů v silně alkalickém prostředí jako manganany zelené barvy (K 2 MnO 4 ) nebo tavením burelu s KOH a KNO 3, jsou meziproduktem při výrobě manganistanů, další redukcí přecházejí na MnO 2

82 Vlastnosti sloučenin Mangan Sloučeniny +VII vznikají elektrolytickou oxidací mangananů nebo disproporcionací mangananů v neutrálním prostředí 3 K 2 MnO H 2 SO 4 → 2 KMnO 4 + MnO K 2 SO H 2 O Nejdůležitější sloučeninou Mn +VII je fialový manganistan draselný KMnO 4

83 Vlastnosti sloučenin Manganistan draselný KMnO 4 má široké použití jako oxidační činidlo v organické, anorganické a analytické chemii V kyselém prostředí jde oxidace na Mn 2+ MnO Fe H + → Mn Fe H 2 O v neutrálním a zásaditém na MnO 2

84 Vlastnosti sloučenin Kyselina manganistá HMnO 4 silná kyselina, se silnými oxidačními vlastnostmi, nestálá, aniont MnO 4 - má tvar tetraedru, oxid Mn 2 O 7 je velmi nestálý Od Tc a Re jsou nejběžnějšími látkami sloučeniny M +VII, oxidy Tc 2 O 7 a Re 2 O 7, kyseliny HTcO 4 a HReO 4 a jejich soli technecistany a rhenistany (stabilní a pouze se slabými oxidačními vlastnostmi)

85 Železo, kobalt, nikl

86 Výskyt Železo – obsah v zemské kůře 6,2 %, čtvrtý nejrozšířenější prvek, nejrozšířenější přechodný kov hlavní minerály: hematit (krevel) Fe 2 O 3, magnetit Fe 3 O 4, siderit FeCO 3 a pyrit FeS 2

87 Výskyt Kobalt – obsah v zemské kůře 0,003 %, až třicátý nejrozšířenější prvek, hlavní minerály: kobaltin CoAsS a smaltin CoAs 2 Nikl - obsah v zemské kůře 0,03 %, hlavní minerál pentlandit (Fe,Ni)S

88 Vlastnosti prvků Konfigurace ns 2 (n-1)d 6 až ns 2 (n-1)d 8 Typické kovy, čisté kovy značně reaktivní (jemné železo je pyroforické), Fe se oxiduje v prostředí O 2 + H 2 O za vzniku odlupující se vrstvy hydratovaných oxidů (limonit), ale Co a Ni se potahují odolnou tenkou oxidickou vrstvou, podstatně odolnější jsou slitiny

89 Vlastnosti prvků Pro železo jsou typické sloučeniny s oxidačními čísly +II, +III a vzácnější +VI, pro kobalt +II a +III (jen v komplexech) a pro nikl +II Pro všechny tři prvky jsou také velmi významné komplexní sloučeniny, které jsou pro železo a kobalt i biologicky velmi důležité (hemoglobin, vitamin B 12 )

90 Výroba kovů Železo Redukcí magnetitu nebo hematitu uhlíkem vzniká litina (obsah C kolem 4 %), redukčními prostředky jsou CO a C Fe 2 O 3 + CO → 2 FeO + CO 2 FeO + C → Fe + CO Nežádoucí příměsi (hlavně SiO 2 ) reagují s přidávaným vápencem na strusku

91 Výroba kovů Ocel Litina nemá pro většinu použití vhodné vlastnosti a dále se zpracovává na ocel (snížení obsahu uhlíku pod 1,5 % a odstranění dalších příměsí) v ocelárnách (oxidace uhlíku kyslíkem na CO, odstranění P a S, přídavky legujících kovů)

92 Výroba kovů Železo Čisté železo se připravuje redukcí oxidů vodíkem Kobalt Po pražení sulfidických rud se louží kyselinou sírovou, často je součástí polymetalických rud (Cu + Zn + Pb + Ag + Ni + As), na závěr se redukuje uhlíkem

93 Výroba kovů Nikl Většina niklu se vyrábí z pentlanditu pražením a následnou redukcí uhlíkem. Čistý nikl se připravuje Mondovým procesem přes tetrakarbonyl niklu (viz dříve)

94 Vlastnosti sloučenin Železo 6 Sloučeniny +II jako kationt [Fe(H 2 O) 6 ] 2+ jsou v kyselém prostředí stabilní, v zásaditém se oxidují již vzdušným kyslíkem na Fe 3+. FeO a Fe(OH) 2 jsou málo stabilní vůči oxidaci, ze solí jsou nejznámější FeSO 4. 7 H 2 O (zelená skalice) a (NH 4 ) 2 Fe(SO 4 ) 2. 6 H 2 O (Mohrova sůl)

95 Vlastnosti sloučenin Železo Sloučeniny +III oxidační stav +III je nejstabilnější, vyskytuje se v solích a 6 kationtu [Fe(H 2 O) 6 ] 3+ (pouze silně kyselé prostředí), v kyselém prostředí mírné oxidační vlastnosti, v mírně kyselém, neutrálním a zásaditém stabilní jako vysrážené oxyd – hydroxidy

96 Vlastnosti sloučenin Fe 2 O 3 velmi stabilní, vedle oxidu i celá řada definovaných oxid-hydroxidů a hydratovaných oxidů tvořících limonit Fe 3 O 4 spinelid složení Fe II Fe III 2 O 4, velmi stabilní, černý a magnetický magnetit, také součást okují

97 Vlastnosti sloučenin Spinelidy podvojné oxidy obecného složení AB 2 O 4, kde A je kov M II (Fe 2+, Mg 2+, Zn 2+, Mn 2+ ) a B je kov M III (Fe 3+, Al 3+, Cr 3+, Mn 3+ ) (ve spinelidech se nevyskytují Ca 2+ ani Ba 2+, protože jsou příliš velké) Krychlová struktura, výrazně vyvinutá izomorfie (zastupování) obdobně velkých kationtů se stejným nábojem

98 Spinelidy tetraedrické polohy M II oktaedrické polohy M III Spinelidy Spinel MgAl 2 O 4 Magnetit Fe 3 O 4 Chromit FeCr 2 O 4 Gahnit ZnAl 2 O 4

99 Vlastnosti sloučenin Železany Sloučeniny +VI vznikající oxidací alkalické suspenze Fe 2 O 3 chlorem, červený aniont FeO 4 2- je podobný síranovému, je poměrně stabilní v alkalickém prostředí, v kyselém se velmi rychle rozkládá Železany jsou silnějšími oxidačními činidly než manganistany

100 Vlastnosti sloučenin Kobalt 6 Sloučeniny +II jako kationt [Co(H 2 O) 6 ] 2+ jsou ve vodném kyselém prostředí stabilní, v zásaditém prostředí se vylučuje Co(OH) 2 Jednoduché soli Co II jsou také stabilní. Sloučeniny +III jsou typické pro komplexy, pokud vznikne komplex Co II, velmi ochotně se oxiduje na Co III

101 Vlastnosti sloučenin Nikl 6 Sloučeniny +II jako kationt [Ni(H 2 O) 6 ] 2+ jsou ve vodném kyselém prostředí stabilní, v zásaditém prostředí se vylučuje Ni(OH) 2 Jednoduché soli Ni II jsou stabilní. V komplexech se vyskytují i další oxidační čísla. Nikl a jeho sloučeniny působí karcinogenně na kůži (rozdíly v citlivosti)

102 Platinové kovy

103 Výskyt Platinové kovy Ru, Rh, Pd, Os, Ir, Pt zastoupení v zemské kůře velmi malé, převážně se vyskytují spolu ve slitinách, doprovázejí také rudy Ni a Cu

104 Vlastnosti prvků Konfigurace ns 2 (n-1)d 6 až ns 2 (n-1)d 8 Typické kovy, čisté kovy velmi nereaktivní, Ru, Rh, Os a Ir se nerozpouštějí v žádné kyselině (ani v lučavce královské), lze je na sloučeniny převést pouze alkalickým tavením s Na 2 O 2 (Rh i tavením s NaHSO 4 ) Jejich zpracování i dělení je velmi obtížné, vyskytují se v řadě oxidačních stavů.

105 Platina Nejvýznamnější z platinových kovů typická oxidační čísla +II a + IV, nejběžnějšími sloučeninami jsou K 2 [PtCl 4 ] a H 2 [PtCl 6 ] (produkt reakce Pt s lučavkou), také řada významných komplexů jako léků (na rakovinu), oxidy Pt jsou nestabilní a za zvýšené teploty se rozkládají

106 Použití Platina katalyzátory (automobily, výroba NO z NH 3, další organické výroby) čistá Pt nebo slitiny s dalšími platinovými kovy na tavicí kelímky (sklářství) šperky, termočlánky, elektrody, kontakty v elektronice

107 Použití Ostatní platinové kovy hlavně katalyzátory (automobily, organické výroby), dále speciální slitiny

108 Měď, stříbro, zlato

109 Historie Všechny tři kovy se v přírodě vyskytují ryzí a začaly být používány pro směnu (mince) a šperky již 5000 až 3000 př. n. l. Kolem roku 3000 př. n. l. je doložena hutní výroba mědi a stříbra z rud

110 Výskyt Měď – obsah 0,007 % (68 ppm) v zemské kůře, hlavní minerály chalkopyrit CuFeS 2, chalkozin Cu 2 S, kuprit Cu 2 O a malachit CuCO 3. Cu(OH) 2 Stříbro – obsah 0,08 ppm, hlavní minerál argentit Ag 2 S Zlato – obsah pouze 0,004 ppm, v přírodě hlavně ryzí

111 Vlastnosti prvků Konfigurace ns 1 (n-1)d 10 odchylka Pro měď mají významné sloučeniny oxidační číslo +I a +II, pro stříbro +I a pro zlato +I a +III Všechny tři kovy jsou ušlechtilé, odolné vůči korozi, zvláště zlato

112 Výroba Měď – rudy se pražením převádějí na oxidy a ty se uhlíkem (koksem) redukují na kov, měď se čistí elektrolyticky Stříbro – vedlejší produkt při zpracování polymetalických rud Cu + Pb + Zn

113 Výroba Zlato – ruda se louží roztokem NaCN 4 Au + 8 NaCN + 2 H 2 O + O 2 → 4 Na[Au(CN) 2 ] + 4 NaOH následně se zlato vyredukuje zinkem Na[Au(CN) 2 ] + Zn → Au + Na[Zn(CN) 2 ]

114 Vlastnosti sloučenin Měď Sloučeniny +I jsou méně stálé než +II, kationt Cu + lehce disproporciuje 2 Cu + → Cu 0 + Cu 2+ Významnou sloučeninou je červený Cu 2 O, který je stabilní a vzniká redukcí Fehlingova roztoku (alkalický roztok CuSO 4 s vinany) aldehydickou skupinou (cukry)

115 Vlastnosti sloučenin Měď Sloučeniny +II stabilní sloučeniny, ve vodě kationt [Cu(H 2 O) 6 ] 2+, v solích různé hydráty, např. [Cu(H 2 O) 4 ] 2+ v CuSO 4. 5 H 2 O stabilní oxid CuO (černý prášek), soli většiny kyselin, řada komplexů s různými koordinačními čísly (hlavně 4 – planární nebo tetraedr, 6 – oktaedr)

116 Vlastnosti sloučenin Stříbro Sloučeniny +I nejstálejší oxidační číslo, nejdůležitější solí AgNO 3, dále nerozpustné halogenidy AgCl, AgBr a AgI (fotografie) Oxid Ag 2 O je málo stálý a teplem se rozkládá, pro stříbro je typická afinita k síře (černání stříbra), Ag 2 S je stabilní a mimořádně nerozpustný

117 Vlastnosti sloučenin Zlato Sloučeniny +I málo stabilní Sloučeniny +III stabilní, hlavně chlorid a chlorokomplexy AuCl 3 a H[AuCl 4 ] z lučavky královské naopak oxid Au 2 O 3 nevzniká reakcí Au s kyslíkem, je málo stálý a rozkládá se teplem, všechny sloučeniny se lehce redukují na zlato

118 Použití Měď – elektrotechnický průmysl, mincovní slitiny, technické slitiny (bronzy) Stříbro – fotografický průmysl, užitkové předměty, elektrotechnika, baterie Zlato – mezinárodní obchod (platidlo), šperky, elektrotechnika (kontakty), zubní lékařství

119 Zinek, kadmium, rtuť

120 Historie Zinek jako součást mosazi v dnešní Palestině používán už kolem roku 1000 př. n. l. Kadmium objeveno až v roce 1817 Rtuť známa a vyráběna z rumělky již kolem roku 500 př. n. l. a používána pro amalgamaci kovů

121 Výskyt Zinek – obsah 0,008 % (76 ppm) v zemské kůře, hlavní minerály sfalerit ZnS a smithsonit ZnCO 3 Kadmium – obsah 0,16 ppm, doprovází zinek Rtuť – obsah pouze 0,08 ppm, v přírodě hlavně minerál cinabarit (rumělka) HgS

122 Vlastnosti prvků Konfigurace ns 2 (n-1)d 10 Pro téměř všechny významné sloučeniny oxidační číslo +II, pouze u rtuti i +I U rtuti se však nejedná o kationt Hg +, ale o kationt (Hg-Hg) 2+ s kovalentní vazbou mezi dvěma atomy rtuti

123 Výroba Zinek – rudy se pražením převádějí na oxidy, ty se uhlíkem (koksem) redukují na kov a Zn se ve formě par odvádí Kadmium – vedlejší produkt při výrobě zinku Rtuť – pražení cinabaritu za přístupu vzduchu a kondenzací par rtuti

124 Vlastnosti sloučenin Zinek Kyselé roztoky a často také sloučeniny obsahují kationt [Zn(H 2 O) 6 ] 2+, přidáním hydroxidů se vylučuje Zn(OH) 2, který se v přebytku hydroxidu rozpouští na hydroxokomplexy [Zn(OH) 4 ] 2- (zinečnatany) amfoterní chování Zinek se v neoxidujících kyselinách a louzích rozpouští za uvolňování H 2.

125 Vlastnosti sloučenin Kadmium obdoba sloučenin zinku Na rozdíl od biogenního zinku je kadmium velmi jedovaté

126 Vlastnosti sloučenin Rtuť Sloučeniny +I málo stálé, významné pouze Hg 2 (NO 3 ) 2 a Hg 2 Cl 2 (kalomel), výrazný sklon k disproporcionaci Hg 2 2+ → Hg 0 + Hg 2+ Všechny sloučeniny rtuti (mimo HgS) jsou vysoce jedovaté

127 Vlastnosti sloučenin Rtuť Sloučeniny +II jsou stabilní, ale lehce redukovatelné nejvýznamnější soli jsou Hg(NO 3 ) 2 a HgCl 2, přídavkem hydroxidů se vylučuje žlutý HgO, opatrným tepelným rozkladem Hg(NO 3 ) 2 vzniká červený HgO (liší se pouze velikostí částic), velmi stabilní je HgS

128 Amalgamy Slitiny rtuti a kovů (tekuté nebo tuhé) se nazývají amalgamy, dříve se používaly na izolaci zlata z rudy (amalgamace) a zlacení, dodnes se využívají v zubním lékařství (amalgamové plomby)

129 Použití Zinek – technické slitiny (mosaz), zinkování plechů, suché články Kadmium – minimální použití, kadmiování Rtuť – rtuťové elektrolyzéry pro výrobu chloru, elektrotechnika, teploměry, zubní lékařství


Stáhnout ppt "Přechodné prvky. Společné vlastnosti Typické je pro ně zaplňování vnitřních AO typu d a v případě lanthanoidů a aktinoidů zaplňování vnitřních AO typu."

Podobné prezentace


Reklamy Google