Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Posuvný a rotační pohyb tělesa.

Podobné prezentace


Prezentace na téma: "Posuvný a rotační pohyb tělesa."— Transkript prezentace:

1 Posuvný a rotační pohyb tělesa.
Základy mechaniky, 14. přednáška Obsah přednášky : pohyb tělesa, posuvný a rotační pohyb Doba studia : asi 1,5 hodiny Cíl přednášky : seznámit studenty se základními typy pohybu tělesa, s kinematikou a dynamikou posuvného a rotačního pohybu

2 Pohyb tělesa rovinný pohyb : Všechny body tělesa
Základy mechaniky, 14. přednáška Pohyb tělesa posuvný pohyb rovinný pohyb : Všechny body tělesa se pohybují v navzájem rovnoběžných rovinách. rotační pohyb obecný rovinný pohyb posuvný pohyb prostorový pohyb sférický pohyb šroubový pohyb obecný prostorový pohyb

3 Pohyb tělesa Žádná přímka tělesa nemění svůj směr. posuvný pohyb
Základy mechaniky, 14. přednáška Pohyb tělesa posuvný pohyb Žádná přímka tělesa nemění svůj směr.

4 Pohyb tělesa Jedna přímka tělesa nemění svou polohu. rotační pohyb
Základy mechaniky, 14. přednáška Pohyb tělesa Jedna přímka tělesa nemění svou polohu. rotační pohyb

5 Základy mechaniky, 14. přednáška
Pohyb tělesa obecný rovinný pohyb

6 Pohyb tělesa Žádná přímka tělesa nemění svůj směr. posuvný pohyb
Základy mechaniky, 14. přednáška Pohyb tělesa Žádná přímka tělesa nemění svůj směr. posuvný pohyb

7 Pohyb tělesa Jeden bod tělesa nemění svou polohu. sférický pohyb
Základy mechaniky, 14. přednáška Pohyb tělesa Jeden bod tělesa nemění svou polohu. sférický pohyb

8 Pohyb tělesa Jeden bod tělesa nemění svou polohu. sférický pohyb
Základy mechaniky, 14. přednáška Pohyb tělesa Jeden bod tělesa nemění svou polohu. sférický pohyb

9 Pohyb tělesa Těleso rotuje okolo osy
Základy mechaniky, 14. přednáška Pohyb tělesa Těleso rotuje okolo osy a současně se posouvá ve směru této osy. šroubový pohyb

10 Základy mechaniky, 14. přednáška
Pohyb tělesa obecný prostorový pohyb

11 Pohyb tělesa rovinný pohyb je jeden z těchto 6 typů pohybu.
Základy mechaniky, 14. přednáška Pohyb tělesa posuvný pohyb rotační pohyb rovinný pohyb obecný rovinný pohyb je jeden z těchto 6 typů pohybu. Jakýkoliv pohyb tělesa posuvný pohyb sférický pohyb prostorový pohyb šroubový pohyb obecný prostorový pohyb

12 Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti
Základy mechaniky, 14. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti x,y,z - pevný (nehybný) souřadný systém; počátek P x,h,z - tělesový souřadný systém - pevně spojený s tělesem; počátek W x//x, h//y, z//z A - běžný bod tělesa

13 Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti
Základy mechaniky, 14. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti rA - polohový vektor bodu A vůči xyz rW - polohový vektor bodu W vůči xyz, poloha tělesa v prostoru rAW - polohový vektor bodu A vůči xhz, poloha bodu A uvnitř tělesa

14 Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti
Základy mechaniky, 14. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti derivace podle času Polohový vektor rAW má velikost a směr. Velikost je konstantní s ohledem na nedeformovatelnost tělesa - těleso se nemůže protáhnout, platí vždy (pro absolutně tuhé těleso). Směr je konstantní s ohledem na definici posuvného pohybu - platí pouze pro posuvný pohyb.

15 Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti
Základy mechaniky, 14. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. 1, 2, 3 stupně volnosti derivace podle času derivace podle času Všechny body se pohybují po stejné trajektorii, stejnou rychlostí, se stejným zrychlením.

16 Žádná přímka tělesa nemění svůj směr.
Základy mechaniky, 14. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. Pohyb posuvný přímočarý. Všechny body se pohybují po stejné trajektorii, stejnou rychlostí, se stejným zrychlením.

17 Žádná přímka tělesa nemění svůj směr.
Základy mechaniky, 14. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. Pohyb posuvný kruhový. Všechny body se pohybují po stejné trajektorii, stejnou rychlostí, se stejným zrychlením.

18 Žádná přímka tělesa nemění svůj směr.
Základy mechaniky, 14. přednáška Posuvný pohyb. Žádná přímka tělesa nemění svůj směr. Pohyb posuvný cykloidní. Všechny body se pohybují po stejné trajektorii, stejnou rychlostí, se stejným zrychlením.

19 Posuvný pohyb - dynamika.
Základy mechaniky, 14. přednáška Posuvný pohyb - dynamika. Pohybová rovnice posuvného pohybu tělesa je shodná s pohybovou rovnicí hmotného bodu. Všechny body tělesa mají stejné zrychlení.

20 Posuvný pohyb - dynamika.
Základy mechaniky, 14. přednáška Posuvný pohyb - dynamika. d’Alembertův princip má stejnou podobu jako u hmotného bodu. D dD dm dm dD dm dm dG a T T a dG a dm dD dm dG dm dm a dD dG G Vzniká otázka kde leží působiště d’Alembertovy síly. Tíhová síla G je výslednicí nekonečně mnoha elementárních tíhových sil dG. D’Alembertova síla D je výslednicí nekonečně mnoha elementárních d’Alembertových sil dD. Elementární tíhová síla dG=dm·g. Elementární d’Alembertova síla dD=dm·a. Gravitační zrychlení g má ve všech bodech stejnou velikost i směr. Zrychlení a má ve všech bodech stejnou velikost i směr.

21 D’Alembertova síla D působí v těžišti.
Základy mechaniky, 14. přednáška Posuvný pohyb - dynamika. d’Alembertův princip má stejnou podobu jako u hmotného bodu. D dD dm dm dD dm a dm dG T T a dG a dm dD dm dG dm dm a dD dG G Vzniká otázka kde leží působiště d’Alembertovy síly. Z analogie mezi rozložením elementárních tíhových sil dG a elementárních d’Alembertových sil dD vyplývá : D’Alembertova síla D působí v těžišti.

22 Posuvný pohyb - dynamika.
Základy mechaniky, 14. přednáška Posuvný pohyb - dynamika. Za účelem sestavení (a následného řešení) pohybové rovnice lze těleso nahradit hmotným bodem ... kterýmkoliv - všechny body se pohybují po stejné trajektorii stejnou rychlostí a se stejným zrychlením. pohybová rovnice

23 Posuvný pohyb - dynamika.
Základy mechaniky, 14. přednáška Posuvný pohyb - dynamika. d’Alembertův princip Do těžiště zavedeme d’Alembertovu sílu - tečnou a normálovou složku. Ze tří rovnic rovnováhy vyřešíme : 1) pohybovou rovnici, 2) reakční síly.

24 Posuvný pohyb - dynamika.
Základy mechaniky, 14. přednáška Posuvný pohyb - dynamika. Pro sestavení (a následné řešení) pohybové rovnice lze hmotu soustředit do jednoho bodu a řešit pohyb hmotného bodu. Pro řešení sil (nejčastěji reakcí) je třeba počítat s rozměry tělesa a uvažovat soustavu sil s různým působištěm. D’Alembertovu sílu pak zavádíme do těžiště.

25 Jedna přímka tělesa nemění svou polohu (osa rotace).
Základy mechaniky, 14. přednáška Rotační pohyb. Jedna přímka tělesa nemění svou polohu (osa rotace). každý bod se pohybuje po kružnici o poloměru R 1 stupeň volnosti úhel natočení úhlová rychlost úhlové zrychlení r polohový vektor v obvodová rychlost at tečné zrychlení an normálové zrychlení

26 Rotační pohyb - dynamika.
Základy mechaniky, 14. přednáška Rotační pohyb - dynamika. V dynamice nevystačíme s pohybovou rovnicí hmotného bodu ! d’Alembertův princip nahrazení silové soustavy Z tělesa vybereme hmotový element dm. Tomu přiřadíme tečné a normálové zrychlení at a an. Zavedeme elementární d’Alembertovy síly dDt a dDn (tečnou a normálovou). Provedeme ekvivalentní nahrazení silové soustavy nekonečně mnoha elementárních d’Alembertových sil jednou silou a momentem. moment setrvačnosti [kg·m2]

27 Rotační pohyb - dynamika.
Základy mechaniky, 14. přednáška Rotační pohyb - dynamika. d’Alembertův princip výsledný silový účinek (působiště ve středu rotace !) výsledný momentový účinek moment setrvačnosti [kg·m2] rT - vzdálenost těžiště od středu rotace

28 Rotační pohyb - dynamika.
Základy mechaniky, 14. přednáška Rotační pohyb - dynamika. akční síly (zatížení) d’Alembertův princip doplňkové účinky reakce řešení reakcí z rovnic rovnováhy včetně doplňkových sil ! neobsahuje reakce ani doplňkové síly doplňková (d’Alembertova) síla - tečná a normálová složka pohybová rovnice doplňkový moment rT - vzdálenost těžiště od středu rotace

29 SMSi - součet momentů vnějších sil
Základy mechaniky, 14. přednáška Rotační pohyb - dynamika. akční síly (zatížení) pohybová rovnice IS - moment setrvačnosti [kg·m2] e - úhlové zrychlení [rad/s2] SMSi - součet momentů vnějších sil ke středu rotace [N·m]

30 Rotační pohyb - dynamika.
Základy mechaniky, 14. přednáška Rotační pohyb - dynamika. kinetická energie Z tělesa vybereme hmotový element dm. Tomu přiřadíme rychlost v a kinetickou energii dEK. Kinetickou energii tělesa určíme integrováním přes celé těleso.

31 Z porovnáním kinematiky a dynamiky posuvného a rotačního pohybu
analogie mezi posuvným a rotačním pohybem Základy mechaniky, 14. přednáška posuvný pohyb rotační pohyb Z porovnáním kinematiky a dynamiky posuvného a rotačního pohybu vyplývá analogie (podobnost) mezi oběma pohyby. Tato analogie spočívá v tom, že jednotlivým fyzikálním veličinám, vztahujícím se k posuvnému pohybu, odpovídají jiné veličiny, vztahující se k rotačnímu pohybu. Vztahy mezi nimi pak jsou shodné. Jestliže ve vztazích, týkajících se posuvného pohybu, nahradíme jedny veličiny druhými, dostaneme analogické vztahy, týkající se rotačního pohybu.

32 příklad - rovnoměrně zrychlený pohyb
analogie mezi posuvným a rotačním pohybem Základy mechaniky, 14. přednáška posuvný pohyb rotační pohyb dráha s, x, ... [m, mm] ~ úhel f [rad, °] rychlost v [m/s] ~ úhlová rychlost w [rad/s] zrychlení a [m/s2] ~ úhlové zrychlení e [rad/s2] příklad - rovnoměrně zrychlený pohyb ~ ~

33 posuvný pohyb rotační pohyb ~ ~ ~ ~
analogie mezi posuvným a rotačním pohybem Základy mechaniky, 14. přednáška posuvný pohyb rotační pohyb síla F, G, ... [N] ~ moment síly M [N·m] hmotnost m [kg] ~ moment setrvačnosti I [kg·m2] pohybová rovnice pohybová rovnice ~ doplňková síla doplňkový moment ~

34 posuvný pohyb rotační pohyb ~ ~ ~ ~ ~ ~
analogie mezi posuvným a rotačním pohybem Základy mechaniky, 14. přednáška posuvný pohyb rotační pohyb hybnost hmoty ~ moment hybnosti [kg·m/s] [kg·m2/s] impuls síly ~ impuls momentu [N·s] [N·m·s] změna hybnosti ~ změna momentu hybnosti kinetická energie ~ kinetická energie [J] [J] práce [N·m] ~ práce [N·m] výkon [W] ~ výkon [W] změna kinetická energie [J ~ N·m]

35 geometrie hmot moment setrvačnosti tenká obruč
Základy mechaniky, 14. přednáška geometrie hmot moment setrvačnosti tenká obruč r = konst

36 geometrie hmot moment setrvačnosti
Základy mechaniky, 14. přednáška geometrie hmot moment setrvačnosti prizmatická tyč rotující okolo osy, procházející koncem tyče

37 geometrie hmot moment setrvačnosti
Základy mechaniky, 14. přednáška geometrie hmot moment setrvačnosti prizmatická tyč rotující okolo osy, procházející středem tyče

38 geometrie hmot moment setrvačnosti válec rotující okolo své osy
Základy mechaniky, 14. přednáška geometrie hmot moment setrvačnosti válec rotující okolo své osy

39 geometrie hmot moment setrvačnosti k posunuté ose Steinerova věta
Základy mechaniky, 14. přednáška geometrie hmot moment setrvačnosti k posunuté ose Steinerova věta

40 geometrie hmot z y r x m m b r a m r m m a m b r a tenká kruhová deska
Základy mechaniky, 14. přednáška geometrie hmot tenká kruhová deska tenká obdélníková deska z y r x m m koule b r a m válec kužel jehlan r m m a m b r a

41 Základy mechaniky, 14. přednáška
geometrie hmot firemní literatura

42 Základy mechaniky, 14. přednáška
geometrie hmot firemní literatura

43 geometrie hmot Základy mechaniky, 14. přednáška 3D CAD modelování
PRINT MASS PROPERTIES ASSOCIATED WITH THE CURRENTLY SELECTED VOLUMES TOTAL NUMBER OF VOLUMES SELECTED = (OUT OF DEFINED) *********************************************** SUMMATION OF ALL SELECTED VOLUMES TOTAL VOLUME = E+08 TOTAL MASS = E-01 CENTER OF MASS: XC= E-03 YC= ZC= *** MOMENTS OF INERTIA *** ABOUT ORIGIN ABOUT CENTER OF MASS PRINCIPAL IXX = IYY = IZZ = IXY = E E-03 IYZ = E E-04 IZX = E E-04 PRINCIPAL ORIENTATION VECTORS (X,Y,Z): (THXY= THYZ= THZX= )


Stáhnout ppt "Posuvný a rotační pohyb tělesa."

Podobné prezentace


Reklamy Google