Téma 12, modely podloží Úvod Winklerův model podloží

Slides:



Advertisements
Podobné prezentace
Prutové těleso, výsledné vnitřní účinky prutů
Advertisements

Téma 5 Metody řešení desek, metoda sítí.
Metoda konečných prvků
FD ČVUT - Ústav mechaniky a materiálů
Téma 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II – úvod pro kombinované studium
Zjednodušená deformační metoda
Obecná deformační metoda
Obecná deformační metoda
Obecná deformační metoda
Obecná deformační metoda
Téma 9, Využití principu virtuálních prací pro řešení stability prutů.
Téma 8, Nelineární chování materiálů, podmínky plasticity.
Téma 2 Rovinný problém, stěnová rovnice.
Téma 3 Metody řešení stěn, metoda sítí.
Téma 7, modely podloží Úvod Winklerův model podloží
Téma 3 ODM, analýza prutové soustavy, řešení nosníků
Obecná deformační metoda
Téma 11, plošné konstrukce, desky
NK 1 – Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc.,
Plošné konstrukce, nosné stěny
Řešení rovinných rámů ZDM při silovém zatížení
ANALÝZA KONSTRUKCÍ 6. přednáška.
Statika stavebních konstrukcí II., 3.ročník bakalářského studia
ANALÝZA KONSTRUKCÍ 7. přednáška.
Vnitřní statické účinky nosníku.
Prostý ohyb Radek Vlach
Pružnost a pevnost Namáhání na ohyb 15
GEOTECHNICKÝ MONITORING Eva Hrubešová, katedra geotechniky a podzemního stavitelství FAST VŠB TU Ostrava.
Interakce konstrukcí s podložím
Statika soustavy těles
Volné kroucení masivních prutů
Téma 7, ODM, prostorové a příčně zatížené prutové konstrukce
Téma 5 ODM, deformační zatížení rovinných rámů
Odvození matice tuhosti izoparametrického trojúhelníkového prvku
Téma 14 ODM, řešení rovinných oblouků
předpoklady: Klasická laminační teorie - předpoklady
VÝPOČTOVÝ MODEL - Model skutečné konstrukce
ANALÝZA KONSTRUKCÍ 2. přednáška.
Obecná deformační metoda Lokální matice tuhosti prutu Řešení nosníků - úvod.
Prostý tah a tlak Radek Vlach
Obecná deformační metoda
Téma 2 Analýza přímého prutu
Obecná deformační metoda
Opakování.
Vyšetřování stěn s otvory
Další úlohy pružnosti a pevnosti.
Výpočet přetvoření staticky určitých prutových konstrukcí
Srovnání výpočetních modelů desky vyztužené trámem Libor Kasl Alois Materna Katedra stavební mechaniky FAST VŠB – TU Ostrava.
Fakulta stavební VŠB-TU Ostrava Miroslav Mynarz, Jiří Brožovský
Modelování součinnosti ocelové obloukové výztuže s horninovým masivem
Konference Modelování v mechanice Ostrava,
Zjednodušená deformační metoda
Řešení příhradových konstrukcí
ANALÝZA KONSTRUKCÍ 9. přednáška.
Téma 9, ZDM, pokračování Rovinné rámy s posuvnými styčníky
Zjednodušená deformační metoda
Obecná deformační metoda Řešení nosníků - závěr. Analýza prutové soustavy Matice tuhosti K (opakování) Zatěžovací vektor F Řešení soustavy rovnic.
Téma 6 ODM, příhradové konstrukce
Nelineární řešení průhybu konzoly II Petr Frantík Ústav stavební mechaniky Ústav automatizace inženýrských úloh a informatiky Fakulta stavební, Vysoké.
Statické řešení pažících konstrukcí
STATICKÉ ŘEŠENÍ OSTĚNÍ PODZEMNÍCH STAVEB
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu VY_32_INOVACE_06-09
PRUTOVÉ (PŘÍHRADOVÉ) KONSTRUKCE
Opakování.
Obecná deformační metoda
Rovinné nosníkové soustavy II
Spojitý nosník Příklady.
Modelování deskových konstrukcí v softwarových produktech
Stabilita a vzpěrná pevnost prutů
Transkript prezentace:

Téma 12, modely podloží Úvod Winklerův model podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení ODM Žemočkinova metoda Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava

Základové konstrukce Slouží k tomu a zajišťují, aby tíha vrchní stavby se přenesla do podloží (půdního tělesa) kontaktní napětí v základové spáře a v podloží zůstaly v přípustných mezích sedání celého objektu zůstalo v přípustných mezích

Základové konstrukce, pokračování Nejběžnější typy základových konstrukcí: základové patky, základové pásy, základové desky, základové rošty, piloty. Podloží je těleso s velmi složitými vlastnostmi (problematika mechaniky zemin). Pro statické výpočty se zpravidla užívá zjednodušených modelů podloží.

Základové konstrukce, pokračování V kontaktní spáře se často počítá pouze s normálovým napětím, smykové napětí se zanedbává. Vazba mezi základovou konstrukcí a podložím je jednostranná, nemůže zde vznikat napětí tahové. Úlohy interakce (spolupůsobení) základových konstrukcí s podložím se nazývají také kontaktní úlohy.

Tuhý nosník (patka) na pružném podkladě Předpoklady: - nosník (těleso) je dostatečně tuhý - lineární průběh kontaktního napětí mezi nosníkem a podložím - kontaktní napětí je tlakové, případně se řeší s vyloučením tahu Uvedené řešení je zjednodušené (přibližné), nedostatečně zohledňuje interakci konstrukce s podložím.

Interakce nosníku s podložím Nosník není zpravidla dostatečně tuhý a kontaktní napětí není lineární. Kromě rovnovážných podmínek se na kontaktu uplatňují také podmínky deformační. Pro řešení interakce konstrukce s podložím se uplatňují různé modely podloží, které je vždy do určité míry idealizují.

Winklerův model podloží Předpokládá, že reakce podloží je přímo úměrná zatlačení nosníku (desky, základu, konstrukce) do podloží.

Winklerův model podloží, analytické řešení Winklerův model je jednoparametrický model. Lze jej znázornit jako soubor pružin samostatně působících na kontaktu základu a podloží. Tam, kde kontakt není, tj. mimo základ, se pružiny simulující podloží nedeformují, což neodpovídá realitě. Winklerův model se pro svou jednoduchost přes zjednodušení a nedostatky v praxi často používá.

Hodnoty součinitele stlačitelnosti podkladu C

Pasternakův model Pasternakův model odstraňuje některé nedostatky Winklerova modelu. Kromě normálových sil uvažuje v podloží i se smykovými silami. Nespojité zaboření objektu dle Winklera je u Pasternaka nahrazeno průhybovou kotlinou.

Pasternakův model, pokračování Pasternakův model je dvojparametrický. Odpovídá lépe realitě. Rekce podloží je zde funkcí: parametru C1 [kNm-3]-součinitel poddajnosti podkladu parametru C2 [kNm-1]-součinitel přenášení smykových sil

Pružný poloprostor Je pružné těleso ohraničené rovinou (povrchem poloprostoru). Je jednou z možných idealizací podloží stavebních konstrukcí. Považuje se zpravidla za homogenní a izotropní.

Pružný poloprostor, pokračování Zatížení poloprostoru silou působící kolmo k povrchu řešil J. Boussinesq. Pro složky napětí odvodil:

Pružný poloprostor, pokračování Pro složky posuvů ve u směru r odvodil: Pro složky posuvů w ve směru osy z odvodil:

Pružný poloprostor, pokračování Průběh složek napětí sr a sz v řezu vedeném paprskem síly pro m=0,25:

Pružný poloprostor, rovnoměrné zatížení na ploše obdélníka Pro bod M ležící v libovolné hloubce z pod vrcholem obdélníka na povrchu s rovnoměrným zatížením byly integrací odvozeny následující vztahy pro výpočet složky napětí sz a posunutí w pro z=0:

Pružný poloprostor, rovnoměrné zatížení na ploše obdélníka, pokračování Vztahy pro výpočet složky napětí sz a posunutí w pro z=0 lze využít i pro body ležící mimo vrchol skutečné zatěžovací obdélníkové plochy. Je přitom nutno dát příslušný bod do vrcholu dvou případně čtyř zatěžovacích ploch.

Pružný poloprostor, rovnoměrné zatížení na ploše obdélníka, příklad Čtvercová zatěžovací plocha, průběh sz z=l/2 a z=l podél osy zatížení pro m=0,25.

Pružný poloprostor, rovnoměrné zatížení na ploše obdélníka, příklad Čtvercová zatěžovací plocha, m=0,25, průběh w na povrchu podél osy a okraje zatížení.

Pružný poloprostor, centricky zatížený dokonale tuhý základ Průběh napětí sz a průhyb w na povrchu pružného poloprostoru pod tuhým základem

Pružný poloprostor, centricky zatížený dokonale tuhý základ, pokračování Při zatížení silou P kruhového základu o poloměru a lze průhyb w0 dán vztahem: Při zatížení silou P čtvercového základu o straně l=2a je pak průhyb w0 dán vztahem:

Winklerův model podloží, analytické řešení nosníku na pružném podloží Diferenciální rovnice ohybové čáry prutu: Pro nosník na pružném podkladě je:

Winklerův model podloží, analytické řešení, pokračování Rovnici lze upravit na tvar Uvedená rovnice je lineární, nehomogenní diferenciální rovnice 4. řádu. Její řešení je známo pro nosníky nekonečné, polonekonečné i pro nosníky konečné délky. Tato řešení jsou použitelná pro relativně malou skupinu úloh.

Winklerův model podloží, jiné metody řešení Rovnici lze řešit také metodou sítí. Interakce nosníku a jiných konstrukcí s Winklerovým modelem podloží nebo i s jinými modely podloží je řešitelná také: silovou metodou obecnou deformační metodou smíšenou metodou - Žemočkinova metoda metodou konečných prvků

Příklad, nosník na pružném podkladě, zadání F = 1000 kN l = 6 m Nosník délky 6 m s modulem pružnosti v tahu a tlaku E = 20 GPa a obdélníkovém průřezu h = 0,5 m a b = 1,0 m je zatěžován silou F = 1000 kN v polovině rozpětí. Nosník je uložen na pružném podkladě s modulem stlačitelnosti podkladu C = 36 MN/m3.

6 vodorovných prutů (oboustranně monoliticky připojené) Příklad, nosník na Winklerově podloží, výpočtový model pro obecnou deformační metodu (0 1 2) (0 3 4) (0 5 6) (0 7 8) (0 9 10) (0 11 12) (0 13 14) 6 vodorovných prutů (oboustranně monoliticky připojené) 7 svislých prutů (pravostranně kloubově připojené)

Příklad, nosník na Winklerově podloží, princip řešení ODM Síla Fi ve svislých prutech:

Příklad, nosník na Winklerově podloží, řešení obecnou deformační metodou Globální matice tuhosti vodorovných prutů

Příklad, nosník na Winklerově podloží, řešení obecnou deformační metodou Globální matice tuhosti svislých prutů

Příklad, nosník na Winklerově podloží, řešení obecnou deformační metodou Celková matice tuhosti nosníku Zatěžovací vektor nosníku

Příklad, nosník na Winklerově podloží, řešení ODM, průhyb nosníku

Příklad, nosník na Winklerově podloží, řešení ODM, hodnoty natočení nosníku

Příklad, nosník na Winklerově podloží, řešení ODM, hodnoty reakcí [kN] (síly ve svislých prutech)

Příklad, nosník na Winklerově podloží, řešení ODM, hodnoty posouvajících sil

Příklad, nosník na Winklerově podloží, řešení ODM, hodnoty ohybových momentů [kNm]

Nosník na pružném podloží, Žemočkinova metoda Nosník na pružném podloží obecně zatížený Rozdělení nosníku na dílky a nahrazení podloží kyvnými pruty

Nosník na pružném podloží, Žemočkinova metoda, pokračování Výpočtový model, základní staticky a polohově určitá konstrukce Neznámé síly Xi nahrazují spojitou reakci podloží pi

Nosník na pružném podloží, Žemočkinova metoda, pokračování Poloha vetknutého okraje nosníku je dána neznámým poklesem w0 a pootočení j0 Úloha je smíšená – řeší se silově a deformačně. Je n neznámých sil a dvě neznámá přetvoření. Sestaví se n+2 rovnic, a to n deformačních podmínek a 2 podmínky silové (rovnovážné).

Nosník na pružném podloží, Žemočkinova metoda, pokračování Deformační podmínky:

Nosník na pružném podloží, Žemočkinova metoda, pokračování Silové (rovnovážné) podmínky: Řešením n+2 rovnic jsou síly X1 až Xn a přetvoření w0 a j0, které stav nosníku a poloprostoru jednoznačně definují.

Modely podloží, použitá literatura Teplý B., Šmiřák S., Pružnost a plasticita II, Nakladatelství VUT Brno 1993 Dický J., Mistriková Z., Sumec J., Pružnost a plasticita v stavebníctve 2, STU v Bratislavě 2006 Sobota J., Statika stavebných konštrukcií 2, Vydavateľstvo ALFA, Bratislava 1991