FI-05 Mechanika – dynamika II

Slides:



Advertisements
Podobné prezentace
Mechanika tuhého tělesa
Advertisements

Silové soustavy, jejich klasifikace a charakteristické veličiny
Přeměny energií Při volném pádu se gravitační potenciální energie mění na kinetickou energii tělesa. Při všech mechanických dějích se mění kinetická energie.
2.2. Dynamika hmotného bodu … Newtonovy zákony
Vymezení předmětu statika, základní pojmy, síla, moment síly k bodu a ose Radek Vlach Ústav mechaniky těles,mechatroniky a biomechaniky FSI VUT Brno Tel.:
MECHANIKA TUHÉHO TĚLESA
Ekvivalence silových soustav a statická rovnováha tělesa
Mechanika Dělení mechaniky Kinematika a dynamika
Rozhodněte o její pohyblivosti (určete počet stupňů volnosti).
Mechanika tuhého tělesa
Hybnost, Těžiště, Moment sil, Moment hybnosti, Srážky
FIFEI-04 Mechanika – dynamika soustavy hmotných bodů a tuhých těles.
5. Práce, energie, výkon.
7. Mechanika tuhého tělesa
MOMENTY SETRVAČNOSTI GEOMETRICKÝCH ÚTVARŮ
Teorie pravděpodobnosti
FIFEI-03 Mechanika – dynamika hmotného bodu a soustavy hmotných bodů.
FI-16 Termika a termodynamika IV Hlavní body Termodynamika Tepelné stroje a jejich účinnost Carnotův cyklus 2. Věta termodynamická,
2.3 Mechanika soustavy hmotných bodů Hmotný střed 1. věta impulsová
Dynamika rotačního pohybu
Soustava částic a tuhé těleso
Posuvný a rotační pohyb tělesa.
MECHANIKA.
Dynamika hmotného bodu
2.3 Mechanika soustavy hmotných bodů Hmotný střed 1. věta impulsová
dynamika soustavy hmotných bodů
Posuvný a rotační pohyb tělesa.
Dynamika.
Vzájemné působení těles
pohyb tělesa, posuvný a rotační pohyb
Mechanika tuhého tělesa
MECHANIKA TUHÉHO TĚLESA
Digitální učební materiál
Strojní mechanika ÚKOLY STATIKY Autor: Ing. Jaroslav Kolář
4.Dynamika.
Dynamika I, 4. přednáška Obsah přednášky : dynamika soustavy hmotných bodů Doba studia : asi 1 hodina Cíl přednášky : seznámit studenty se základními zákonitostmi.
Mechanika soustavy hmotných bodů zde lze stáhnout tuto prezentaci i učební text, pro vaše pohodlí to budu umisťovat také.
Síla.
FIIFEI-01 Nejdůležitější partie z fyziky I
Mechanika tuhého tělesa
Mechanika tuhého tělesa
Tuhé těleso, moment síly
FFZS-03 Mechanika – dynamika soustav hmotných bodů a tuhých těles
Statická ekvivalence silového působení
Steinerova věta (rovnoběžné osy)
Rovnováha a rázy.
Moment setrvačnosti momenty vůči souřadnicovým osám x,y,z
Dj j2 j1 Otáčivý pohyb - rotace Dj y x POZOR!
Energie tuhého tělesa VY_32_INOVACE_ března 2013
Fyzika pro lékařské a přírodovědné obory Ing. Petr VáchaZS – Mechanika tuhého tělesa.
Mechanika tuhého tělesa Kateřina Družbíková Seminář z fyziky 2008/2009.
Fyzika I-2016, přednáška Dynamika hmotného bodu … Newtonovy zákony Použití druhého pohybového zákona Práce, výkon Kinetická energie Zákon zachování.
Rovnoměrný pohyb po kružnici a otáčivý pohyb
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/ – Investice do vzdělání nesou.
Rovnoměrně rotující vztažná soustava
Kinetická energie tuhého tělesa
KMT/MCH2 – Mechanika 2 Přednáška, Jiří Kohout
Rovnoměrný pohyb po kružnici
STATIKA část mechaniky, která se zabývá rovnováhou sil působících na dokonale tuhá tělesa.
MECHANIKA.
KMT/MCH2 – Mechanika 2 Přednáška, Jiří Kohout
Otáčení a posunutí posunutí (translace)
Rotační kinetická energie
Tuhé těleso Tuhé těleso – fyzikální abstrakce, nezanedbáváme rozměry, ale ignorujeme deformační účinky síly (jinými slovy, sebevětší síla má pouze pohybové.
3. Pohybová rovnice tuhého tělesa
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA
Valení po nakloněné rovině
Transkript prezentace:

FI-05 Mechanika – dynamika II 25. 2. 2007

Hlavní body Blíže k realitě : soustava hmotných bodů a dokonale tuhé těleso První a druhá impulsová věta Hmotný střed Moment setrvačnosti a Steinerova věta Rozklad silového působení na translační a rotační u dokonale tuhého tělesa 25. 2. 2007

Soustava hmotných bodů I Dosud jsme se zabývali mechanikou hmotného bodu. Tato abstrakce se hodila pro pohodlnou definici základních veličin mechaniky, ale při splnění příslušných předpokladů ji lze použít i k řešení skutečných problémů. Obecný sytém lze chápat jako soustavu hmotných bodů, které spolu interagují. 25. 2. 2007

První věta impulsová I Na i-tý hmotný bod působí výslednice sil, kterou můžeme rozdělit na výslednici vnitřních sil, pocházejících z iterakce s hmotnými body, které jsou součástí systému a výslednici sil vnějších. Podle 2. Nz.: 25. 2. 2007

První věta impulsová II Celková hybnost systému je vektorový součet všech hybností: Potom platí: 25. 2. 2007

První věta impulsová III Časová změna celkové hybnosti je rovna výslednici vnějších sil. Důsledkem platnosti zákona akce a reakce je totiž součet všech vnitřních sil přes celý systém roven nule : 25. 2. 2007

Druhá věta impulsová I Obdobně můžeme uvažovat o otáčivém účinku síly na i-tý hmotný bod vzhledem k libovolnému pevnému bodu O: 25. 2. 2007

Druhá věta impulsová II Celkový moment hybnost systému je vektorový součet všech momentů hybností uvažovaných k témuž pevnému bodu O: Při sčítání přes celý systém opět využíváme důsledku zákona akce a reakce. 25. 2. 2007

Druhá věta impulsová III Časová změna celkového momentu hybnosti je rovna výslednici momentů vnějších sil, vzhledem k pevnému bodu O: 25. 2. 2007

Důsledky impulsových vět Je-li výslednice vnějších sil, působících na systém nulová, zachovává se celková hybnost systému. Je-li výslednice momentů vnějších sil, působících na systém nulová, zachovává se celkový moment hybnosti systému. Vnější síly mají obecně translační i rotační účinek. Je důležité, jak působí vzhledem k hmotnému středu. 25. 2. 2007

Příklad – ráz těles I Centrální ráz – hmotné body jsou kuličky, na které nepůsobí žádné vnější síly. Před srážkou se (proti sobě) pohybují dvě kuličky mi, rychlostmi vi. Po srážce mají rychlosti ui. Podle I.VI se vždy zachovává celková hybnost: Ráz se odehrává mezi dvěma mantinely - dokonale nepružný u1 = u2 = u: Dokonale pružný – zachovává se i celková kinetická energie : 25. 2. 2007

Ráz těles II po vydělení rovnic dojdeme k řešení 25. 2. 2007

Hmotný střed I Celou soustavu lze reprezentovat těžištěm, přesněji hmotným středem , ve kterém je soustředěna celá hmotnost soustavy Získáme ho integrací rovnice : Definice těžiště platí i ve složkách : , , 25. 2. 2007

Hmotný střed II Hmotný střed: Nezávisí na volbě souřadné soustavy. Ale její vhodná volba může značně usnadnit výpočet. Je v průsečíku prvků symetrie. S ohledem na to volíme souřadnou soustavu. U těles s rotační symetrií lze využít Pappova teorému : dráha těžiště x plocha = objem. 25. 2. 2007

Hmotný střed III Uvažujme nový počátek v těžišti Potom : Této rovnosti lze využít k důkazu důležitých vlastností těžiště : rotace systému kolem libovolné osy, procházející těžištěm a pohyb posuvný neboli translační tohoto těžiště v prostoru jsou pohyby na sobě nezávislé. 25. 2. 2007

Hmotný střed IV Druhá věta impulsová tedy platí nejen vztáhneme-li ji k libovolnému pevnému bodu, ale také k těžišti systému, které se může dokonce obecně pohybovat. Je to ale jediný pohyblivý bod vzhledem k němuž tato věta platí. 25. 2. 2007

Dokonale tuhé těleso I Rozložení vnějšího účinku na translační a rotační závisí na dodatečných podmínkách. Některé systémy lze považovat za dokonale tuhé. Znamená to, že žádným působením se nemohou měnit vzdálenosti mezi hmotnými body. Takový systém tedy není možné deformovat. 25. 2. 2007

Dokonale tuhé těleso II Ani translační ani rotační silové působení na dokonale tuhé těleso se nezmění když: do libovolného bodu umístíme dvě síly stejně velké, ale opačně orientované. libovolnou sílu posuneme kamkoli po přímce jejího působení.  na libovolnou přímku umístíme dvě síly stejně velké, ale opačně orientované. 25. 2. 2007

Dokonale tuhé těleso III Účinek síly, která působí v přímce procházející těžištěm, je čistě translační Účinek dvojice stejných, opačně orientovaných sil, působících v libovolných paralelních přímkách, je čistě rotační. 25. 2. 2007

Dokonale tuhé těleso IV Steinerova věta I U tuhých těles je výhodné popsat rozložení hmotnosti pomocí momentu setrvačnosti : J =  mi r2i Z vlastnosti těžistě plyne Steinerova věta : kde Ja je moment setrvačnosti vůči ose, vzdálené a od těžiště a Jt je m.s. vůči ose procházející těžištěm, která je s ní paralelní 25. 2. 2007

*Dokonale tuhé těleso V Steinerova věta II Polohový vektor i-tého bodu lze vyjádřit pomocí jeho polohového vektoru v těžišťové soustavě : Tedy : Prostřední člen je z vlastnosti těžiště roven nule. 25. 2. 2007

Dokonale tuhé těleso VI Steinerova věta III Je patrné, že ze všech paralelních os je moment setrvačnosti nejmenší vůči ose procházející těžištěm. Je-li výslednice všech momentů sil, které působí na DTT nulová, rotuje těleso rovnoměrně (s konstantní ) kolem osy, procházející těžištěm nebo je v klidu. 25. 2. 2007

Dokonale tuhé těleso VII Statika Je-li výslednice všech sil, působících na DTT so nulová, pohybuje se těleso rovnoměrně nebo je v klidu. Hledáním podmínek, za kterých zůstávají tělesa v klidu se zabývá statika. Obecně musí být vykompenzovány všechny síly a všechny momenty sil, a to každá jejich složka. 25. 2. 2007

Dokonale tuhé těleso VIII Kinetická energie Lze ukázat, že celková kinetická energie dokonale tuhého tělesa se obecně skládá z translační a rotační složky: 25. 2. 2007

Dokonale tuhé těleso IX hmotnost ~ moment setrvačnosti Ve vztazích pro rotační pohyb vystupuje moment setrvačnosti na místech, kde v analogických vztazích pro pohyb translační vystupuje hmotnost: 25. 2. 2007