Tělesa –Pravidelný šestiboký hranol

Slides:



Advertisements
Podobné prezentace
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
Advertisements

Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
OBDÉLNÍK 1. ZÁKLADNÍ VLASTNOSTI OBDÉLNÍKU 2. OBVOD A OBSAH OBDÉLNÍKU – SLOVNÍ ÚLOHY   Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je.
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Snellův zákon Číslo DUM: III/2/FY/2/3/19 Vzdělávací předmět: Fyzika Tematická oblast: Optika Autor: Ing.
Jehlan Matematické dovednosti. Jméno autora: Marie Roglová Škola: ZŠ Náklo Datum vytvořeníBřezen 2013 Ročník: 9. Tematická oblast:Matematická gramotnost.
CZ.1.07/1.4.00/ "Učíme se moderně" Digitální učební materiál zpracovaný v rámci projektu Šablona:III/2 Inovace a zkvalitnění výuky prostřednictvím.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
Jehlan Základní škola a Mateřská škola Knínice u Boskovic, příspěvková organizace projekt č. CZ.1.07/1.4.00/ číslo DUMu: VY_32_INOVACE_22_M9_jehlan.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Kancelářské balíčky Číslo DUM: III/2/VT/2/2/29 Vzdělávací předmět: Výpočetní technika Tematická oblast:
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Číslo projektu:CZ.1.07/1.4.00/ Název DUM: Tělesa –Válec Číslo.
Kolmé hranoly, jejich objem a povrch
Tělesa –Hranol Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Kolmé hranoly, jejich objem a povrch
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Čtyřúhelník - obdélník
Výukový materiál zpracován v rámci projektu
Tělesa – krychle Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
25.1 Druhy a vlastnosti rovnoběžníků II. OBSAH a OBVOD
Obvod a obsah mnohoúhelníků
Výukový materiál zpracován v rámci projektu
Základní škola a mateřská škola J.A.Komenského
Tělesa –čtyřboký hranol
Název školy: Základní škola a Mateřská škola Kladno, Norská 2633
Matematika Koule.
Výukový materiál zpracován v rámci projektu
těleso skládající se z jedné kruhové podstavy a pláště
Matematika Komolý rotační kužel
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Sériové řazení rezistorů
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Hranoly Základní pojmy.
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Čtyřúhelník – obvod čtverce
Tělesa – kvádr Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Název školy : Základní škola a mateřská škola,
Dotkněte se inovací CZ.1.07/1.3.00/
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Internetové prohlížeče
OBJEM JEHLANU VY_42_INOVACE_ 30_02.
Výukový materiál zpracován v rámci projektu
Jehlan těleso skládající se z jedné podstavy, která má tvar mnohoúhelníku a pláště.
VY_32_INOVACE_13_MII_PYTHAGOROVA VĚTA
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Tělesa –čtyřboký hranol
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Měření objemu pevných látek
Tělesa – krychle Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Výukový materiál zpracovaný v rámci projektu "EU peníze školám"
Geometrická tělesa VY_32_Inovace_010KJ-1
DIGITÁLNÍ UČEBNÍ MATERIÁL
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Dalekohled
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Pythagorova věta – příklady
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Název školy:  ZÁKLADNÍ ŠKOLA PODBOŘANY, HUSOVA 276, OKRES LOUNY Autor:
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Vnitřní a vnější úhly v trojúhelníku
MATEMATIKA Objem a povrch jehlanu 2.
EU peníze středním školám – digitální učební materiál
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Čtyřúhelník - obdélník
MATEMATIKA Trojúhelníky - základní vlastnosti.
Užití mocnin a odmocnin ve slovních úlohách II.
MATEMATIKA Objem a povrch hranolu 4.
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Měření objemu kapalin
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
OBVOD A OBSAH SLOŽITĚJŠÍCH OBRAZCŮ
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Transkript prezentace:

Tělesa –Pravidelný šestiboký hranol Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Tělesa –Pravidelný šestiboký hranol Číslo DUM: III/2/MAT/2/1/1-58 Vzdělávací předmět: Matematika Tematická oblast: Matematika a její aplikace Autor: Alena Čechová Anotace: Žák se seznámí s výpočtem V a S pravid. šestibokého hranolu s pomocí Pyth. věty Výkladová hodina Klíčová slova: Šestiboký hranol, objem, povrch, Pythagorova věta Metodické pokyny: PC, DTP, metodické pokyny jsou součástí materiálu Druh učebního materiálu: Prezentace doplněná fotografiemi a testy. Druh interaktivity: Kombinovaná Cílová skupina: Žák 6., 7.,8. a 9. ročníku Datum vzniku DUM: 5.2.2014 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová.

Pravidelný šestiboký hranol

Opakování: 1) Základní vlastnosti rovnostranného trojúhelníku: Tři stejně dlouhé strany, tři shodné vnitřní úhly, výšky splývají s těžnicemi. 2) Jak se vypočítá obvod a obsah rovnostranného trojúhelníku? o = 3 . a S = 𝒂 . 𝒗 𝟐 3) Vyjádři výšku v rovnostranném pomocí Pythagorovy věty: v² = a² - ( 𝒂 𝟐 )² a a v . a

Základní označení: horní podstava podstavná hrana boční stěna / plášť/ boční hrana dolní podstava

Pravidelný kolmý šestiboký hranol je těleso, které se skládá ze dvou podstav ve tvaru pravidelného šestiúhelníku a z pláště, který je složen ze šesti shodných obdélníků / čtverců /. Pro výpočet objemu a povrchu využíváme obecných vzorců pro objem a povrch hranolu. V = Sp . v S = 2Sp + Spl

Důležité pro výpočet objemu a povrchu je umět vypočítat obvod a obsah pravidelného šestiúhelníku. Pravidelný šestiúhelník se skládá ze šesti shodných rovnostranných trojúhelníků. o = 6. a v² = a² - ( 𝒂 𝟐 )² S = 6. S∆ S = a . v : 2 a v a

Kružnice opsaná pravidelnému šestiúhelníku Poloměr kružnice opsané je roven straně pravidelného šestiúhelníku. r a

Příklad: Vypočítej objem a povrch pravidelného šestibokého hranolu s podstavnou hranou a = 8 cm a s výškou hranolu v = 12 cm. va 8cm v = 12cm a = 8 cm

Řešení: Výpočet objemu: Výpočet povrchu: V = Sp . v Sp = 6 . S∆ S ∆ = 𝒂 . 𝒗𝒂 𝟐 va = 𝟖² − 𝟒 2 V = 165,6 . 12 Sp = 6 .27,6 S = 𝟖 . 𝟔,𝟗 𝟐 va = 𝟔𝟒 −𝟏𝟔 V = 1987,2cm³ Sp = 165,6cm² S = 4 . 6,9 va = 𝟒𝟖 Sp =165,6 cm² S = 27,6cm² va = 6,93 cm ≐ 6,9cm Výpočet povrchu: S = 2Sp + Spl Spl = o . v S = 2. 165,6 + 576 Spl = 48 . 12 S = 331,2 + 576 Spl = 576 cm² S = 907,2 cm² Šestiboký hranol má objem 1987,2 cm³ a povrch 907,2 cm².

Příklad: Novákovi mají na zahradě nádrž na dešťovou vodu, která má tvar pravidelného šestibokého hranolu s rozměry podle obrázku. Vypočítej, kolik hektolitrů vody se do této nádrže vejde. 5m 1,2m

Řešení: Pro výpočet můžeme použít z tabulek vzorec pro plochu šestiúhelníku – najdi si ho: S = 2,6 r² = 2,6 a² - vysvětli, proč se r = a V = Sp . v Sp = 2,6 a² V = 3,744 . 5 Sp = 2,6 . 1,2² V = 18,72 m³ Sp = 3,744 m² Do nádrže se vejde 187,2 hl dešťové vody. 18 18,72 m³ = 187,2 hl

Použité zdroje http://www.datakabinet.cz/cs/Vyukove-materialy-a-data/Matematika-a-jeji-aplikace/ Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová.