Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2887 Název projektu: „Učíme lépe a moderněji“ OP VK 1.4 Výukový materiál Název DUMu: VY_42_INOVACE_36_1_Riskuj – geometrie – 8. ročník Číslo skupiny: 1 Autor: Mgr. Roman Marschner Vzdělávací oblast / Téma: Matematika a její aplikace / Geometrie v rovině a prostoru Druh učebního materiálu: Prezentace Metodický list: ne Anotace: Pomocí hry Riskuj opakování učiva 8.ročníku. Žáci se rozdělí na dvě skupiny a skupiny si střídavě volí jednotlivé otázky. Odpoví-li správně, získávají odpovídající počet bodů, odpoví-li špatně, ztrácí odpovídající počet bodů. Vítězí skupina s větším počtem bodů. Ověřeno ve třídě: VIII.C Datum ověření: 21.6.2012 Prohlášení: Prohlašuji, že při tvorbě výukového materiálu jsem respektoval(a) všeobecně užívané právní a morální zvyklosti, autorská a jiná práva třetích osob, zejména práva duševního vlastnictví (např. práva k obchodní firmě, autorská práva k software, k filmovým, hudebníma fotografickým dílům nebo práva k ochranným známkám) dle zákona 121/2000 Sb. (autorský zákon). Nesu veškerou právní odpovědnost za obsah a původ svého díla. Prohlašuji dále, že výše uvedený materiál jsem ověřil(a) ve výuce a provedl(a) o tom zápis do TK. Dávám souhlas, aby moje dílo bylo dáno k dispozici veřejnosti k účelům volného užití (§30 odst. 1 zákona 121/2000 Sb.), tj. že k uvedeným účelům může být kýmkoliv zveřejňováno, používáno, upravováno a uchováváno. Datum: 21.6.2012 Podpis:
Geometrie v rovině a v prostoru 8. ročník RISKUJ Geometrie v rovině a v prostoru 8. ročník
RISKUJ Kružnice 1 000 2 000 3 000 4 000 Válec 1 000 2 000 3 000 4 000 Množina bodů 1 000 2 000 3 000 4 000 Vzorce 1 000 2 000 3 000 4 000
Kružnice za 1 000 Jak se nazývá přímka, která má s kružnicí společný jeden bod? tečna
Kružnice za 2 000 Jak se nazývá přímka, která má s kružnicí společný dva body? sečna
Kružnice za 3 000 Jak se nazývají kružnice, které mají společný střed? soustředné
Kružnice za 4 000 Jak se nazývá nejdelší tětiva? průměr
Válec za 1 000 Kolik podstav má válec? dvě
Válec za 2 000 Jak se nazývá úsečka, která spojuje středy podstav? výška
Válec za 3 000 Z jakých rovinných útvarů se může skládat rozvinutý plášť válce? (Uveď obě možnosti.) obdélník, čtverec
Válec za 4 000 PRÉMIE
Množina bodů za 1 000 Jak se nazývá množina bodů, která má od daného bodu stejnou vzdálenost? kružnice
Množina bodů za 2 000 PRÉMIE
Množina bodů za 3 000 Jak se nazývá část roviny mezi dvěma soustřednými kružnicemi? mezikruží
osy úhlů s rameny na různoběžkách Množina bodů za 4 000 Jak se nazývají množiny bodů, které mají od daných různoběžek stejnou vzdálenost? osy úhlů s rameny na různoběžkách
Vzorce za 1 000 Jaký je vzorec pro výpočet délky kružnice? O = 2πr, příp. O = πd
Vzorce za 2 000 Jaký je vzorec pro výpočet obsahu kruhu? S = πr2
Vzorce za 3 000 Jaký je vzorec pro výpočet objemu válce? V = πr2v
Vzorce za 4 000 Jaký je vzorec pro výpočet povrchu válce? S = 2πr(r + v)
Zdroje Vlastní archiv autora