Kmity, vlny, akustika Pavel KratochvílPlzeň, 2014 - ZS Část I - Kmity.

Slides:



Advertisements
Podobné prezentace
KMT/FPV – Fyzika pro přírodní vědy
Advertisements

Kmitavý pohyb.
Geometrické znázornění kmitů Skládání rovnoběžných kmitů
SPŠ SE Liberec a VOŠ Mgr. Jaromír Osčádal
Kmitavý pohyb 1 Jana Krčálová, 8.A.
Kmity, kmity, kmity, …. Na co bychom měli umět odpovědět Co to jsou kmity Pohyb harmonický, periodický, kvaziperiodický Podmínka vzniku kmitů Síla setrvačná,
Kmitavý pohyb 2 Jakub Báňa.
Mechanické kmitání.
Jaká síla způsobuje harmonické kmitání?
24. ZÁKONY ZACHOVÁNÍ.
Jako se rychlost v průběhu kmitání mění
Fyzika – mechanické kmitání a vlnění
Tlumené kmity pružná síla brzdná síla?.
11. Přednáška – BBFY1+BIFY1 kmitání
DYNAMIKA HARMONICKÉHO POHYBU.  Vychýlíme-li kuličku z rovnovážné polohy směrem dolů o délku y, prodlouží se pružina rovněž o délku y.  Na kuličku působí.
Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky
ZRYCHLENÍ KMITAVÉHO POHYBU.  Vektor zrychlení a 0 rovnoměrného pohybu po kružnici směřuje do středu kružnice a má velikost:  Zrychlení a kmitavého pohybu.
Šablona:III/2č. materiálu: VY_32_INOVACE_FYZ44 Jméno autora:Mgr. Alena Krejčíková Třída/ročník:2. ročník Datum vytvoření: Výukový materiál zpracován.
Výukový materiál zpracován v rámci projektu EU peníze školám
Kmity HRW kap. 16.
SOUVISLOST KMITAVÉHO POHYBU S ROVNOMĚRNÝM POHYBEM PO KRUŽNICI
Kmitavý pohyb matematického kyvadla a pružiny
FI-10 Kmity a vlnění I
Poznámky pro výuku Předmět: FYZIKA Autor: Jaroslava Šmerdová
Škola: Chomutovské soukromé gymnázium Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Moderní škola Název materiálu:VY_32_INOVACE_FYZIKA1_14 Tematická.
KYVADLO
Derivace funkce Derivací funkce f je funkce f ´ která udává sklon (strmost) funkce f v každém jejím bodě Kladná hodnota derivace  rostoucí funkce Záporná.
MECHANICKÉ KMITÁNÍ 03. Harmonické kmitání Mgr. Marie Šiková KMITAVÉ A VLNOVÉ JEVY
Kmitavý pohyb
Skládání kmitů.
Název školyStřední odborná škola a Gymnázium Staré Město Číslo projektuCZ.1.07/1.5.00/ AutorIng. Ivana Brhelová Název šablonyIII/2.
KMITAVÝ POHYB KMITAVÝ POHYB  Kmitavý pohyb vznikne tehdy, pokud vychýlíme zavěšenou kuličku na pružině z rovnovážné polohy.  Rovnovážná poloha.
Kmity.
Kmitání.
Moment setrvačnosti momenty vůči souřadnicovým osám x,y,z
Kmitání mechanických soustav I. část - úvod
Kmitání mechanických soustav 1 stupeň volnosti – vynucené kmitání
Mechanické kmitání Mgr. Kamil Kučera.
Kmity frekvence f (Hz) perioda T = 1/f (s) w = 2p.f
4 KMITÁNÍ A VLNĚNÍ, AKUSTIKA 4.1 MECHANICKÉ KMITÁNÍ
Mechanické kmitání Mechanické kmitání
Definice periodického pohybu: Periodický pohyb je pohyb, který se v pravidelných časových intervalech opakuje, např. písty spalovacího motoru,
Experiment mechanický oscilátor
Kmitání Kmitání (též oscilace nebo kmitavý děj) je změna, typicky v čase, nějaké veličiny vykazující opakování nebo tendenci k němu. Kmitající systém se.
Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY.
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu:CZ.1.07/1.5.00/ – Investice do vzdělání nesou nejvyšší.
Kmity, vlny, akustika Pavel KratochvílPlzeň, ZS Část I - Kmity.
Mechanické kmitání Vlnění a optika(Fyzika) Bc. Klára Javornická Název školy Střední škola hotelová, služeb a Veřejnosprávní akademie s. r. o. Strážnice.
Č.projektu : CZ.1.07/1.1.06/ Portál eVIM Perioda kyvadla.
Kyvadlo Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Tematická oblastFYZIKA – Kmitání, vlnění a elektřina Datum vytvoření
Mechanické kmitání - test z teorie Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Tematická oblastFYZIKA - Kmitání, vlnění a elektřina.
Harmonický oscilátor – pružina pružina x pohybová rovnice počáteční podmínky řešení z počátečních podmínek dostáváme 0.
Gravitační pole – princip superpozice potenciál: v poloze [0,0] v poloze [1,0.25]
Kyvadlo.
Mechanické kmitání, vlnění
Financováno z ESF a státního rozpočtu ČR.
Název školy: Gymnázium, Roudnice nad Labem, Havlíčkova 175, příspěvková organizace Název projektu: Moderní škola Registrační číslo projektu: CZ.1.07/1.5.00/
Skládání rovnoběžných kmitů
Jaká síla způsobuje harmonické kmitání?
Fyzika pro lékařské a přírodovědné obory
Název školy: Gymnázium, Roudnice nad Labem, Havlíčkova 175, příspěvková organizace Název projektu: Moderní škola Registrační číslo projektu: CZ.1.07/1.5.00/
Kmity HRW2 kap. 15 HRW kap. 16.
MECHANICKÉ VLNĚNÍ.
Harmonický oscilátor – pružina
Kmity, vlny, akustika Část I – Kmity, vlny Pavel Kratochvíl
Kmitání Mgr. Antonín Procházka.
ROVNICE POSTUPNÉ MECHANICKÉ VLNY.
Mechanické kmitání, vlnění
Mechanické kmitání a vlnění
MECHANIKA TUHÉHO TĚLESA
Transkript prezentace:

Kmity, vlny, akustika Pavel KratochvílPlzeň, ZS Část I - Kmity

Mechanické kmity Kmitání = pohyb při němž pohybující se těleso nepřekročí konečnou vzdálenost od tzv. rovnovážné polohy Rovnovážná poloha = poloha, ve které je součet sil působících na těleso nulový (je-li těleso v klidu, ustálí se v této poloze) Kmitavý pohyb – lineární x plošný x prostorový Obecný kmitavý pohyb Periodický kmitavý pohyb – perioda T, frekvence f = 1/T Harmonický kmitavý pohyb –

Lineální harmonické kmity netlumené Řešení diferenciální rovnice: Doba periody závisí na hmotnosti závaží a tuhosti pružiny Je-li tedy síla vracející kmitající těleso do rovnovážné polohy přímo úměrná výchylce z této polohy, je vzniklé kmitání harmonické

Matematické kyvadlo = hmotný bod zavěšený na nehmotném závěsu Síla vracející kmitající těleso do rovnovážné polohy není přímo úměrná výchylce - vzniklé kmitání není harmonické

Tlumené kmity mechanické Řešení diferenciální rovnice:

Nucené kmity mechanické Řešení diferenciální rovnice: Důsledky mechanické rezonance: nebezpečné rozkmitání mostů při vyrovnání vlastní frekvence a frekvence vnějšího buzení, rezonance křemenného krystalu v hodinkách, akustická rezonance u hudebních nástrojů…

Energie kmitavého pohybu