Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Biotechnologie Jakákoliv technologie využívající biologický materiál –celé organismy (bakterie, plísně, rostliny…) –části organismů (izolované tkáně a.

Podobné prezentace


Prezentace na téma: "Biotechnologie Jakákoliv technologie využívající biologický materiál –celé organismy (bakterie, plísně, rostliny…) –části organismů (izolované tkáně a."— Transkript prezentace:

1 Biotechnologie Jakákoliv technologie využívající biologický materiál –celé organismy (bakterie, plísně, rostliny…) –části organismů (izolované tkáně a pletiva) –biomakromolekuly (enzymy, protilátky…) –společenstva organismů

2 Biologický materiál Přirozený Upravený –Mutanty –Adaptované kultury –Geneticky modifikované organismy –Chemicky modifikované biomakromolekuly Volný Imobilizovaný (zasazený do matrice)

3 Imobilizace biologického materiálu Imobilizace = znehybnění Vytvoření materiálu, který pevně váže biologický materiál + jednodušší manipulace (izolace, dávkování…) + opakované použití + větší odolnost biologického materiálu - imobilizace může biomateriál poškodit - difúzní limitace - vyšší cena

4

5 Způsoby imobilizace Podle matrice –bez matrice (např. kovalentní prokřížení enzymů glutaraldehydem) –organická matrice (polysacharidy – alginát…) –anorganická matrice (keramické materiály) –hybridní matrice (křemičitý gel – alginát…)

6 Způsoby imobilizace Podle vazby materiálu na matrici –kovalentní –nekovalentní – vodíkové můstky, Van der Walsovy síly… –bez spojení – matrice materiál pevně obklopuje (enkapsulace)

7 Klasické biotechnologie Živé mikroorganismy používal člověk už od pradávna (nevědomky) –výroba alkoholických nápojů –jiné potraviny (kvasnice, kysané mléko…) –tradiční nápoje (kombucha)

8 Moderní biotechnologie Potravinářství Produkce látek (aminokyseliny, antibiotika, vitamíny, meziprodukty metabolismu, ethanol…) Produkce bílkovin (enzymy, hormony, protilátky…) Chemické syntézy (farmacie) Rozklad nežádoucích látek (čističky, ropné skvrny…) Biosenzory …

9 Způsoby velkoobjemové kultivace Tři základní typy kultivace 1.Vsádková (batch) Smíchání všech reaktantů v jednom reaktoru Vypuštění produktů po zkončení reakce 2.Průtočná (kontinuální) Nepřetržité připouštění reaktantů a vypouštění produktů Reakce může probíhat prakticky nepřetržitě 3.Fed-batch („příkrmová“) Vsádková kultivace s občasným přidáním některého substrátu

10 Vsádková kultivace Tradiční metoda Obvykle méně ekonomická Pro některé procesy jediná možná

11 Průtočná kultivace Modernější Obvykle ekonomicky efektivnější –větší výkon na méně prostoru Obtížnější regulace Koncentrace složek i mikrobiálních buněk závisí na zřeďovací rychlosti D (rychlosti přítoku substrátů a odebírání produktů)

12 Regulace průtočných systémů Mikrobiální buňky musí zůstat v reaktoru po celou dobu kultivace v cca konstantním množství –imobilizace –rozmnožování vyvážené odplavováním

13 Turbidistat Neustálé měření koncentrace buněk (obvykle turbidimetricky = rozptyl světla) a regulace zřeďovací rychlosti –při přírůstku buněk zvýšení rychlosti –při úbytku buněk snížení rychlosti Je možné dosáhnout maximální rychlosti růstu Skutečná rychlost kolísá těsně pod maximální

14 Chemostat Jedna z živin je v nedostatku – všechna se spotřebuje –nelze dosáhnout vyššího nárůstu než kolik určuje limitní živina –při odplavení části buněk zůstane více limitující živiny pro ostatní a rychlost růstu se zvýší –zřeďovací rychlost je neměnná

15 Produkce alkoholických nápojů Nejčastěji kvasinky, zejména Saccharomyces cerevisiae (kvasinka pivní) Kvašení cukr  alkohol + CO 2 Různé druhy kvašení –horní – méně používané, MO na hladině –spodní (submerzní) – MO na dně

16 Produkce alkoholických nápojů Kvašením může vzniknout max. cca % alkoholu (cca vnitrobuněčná koncentrace ethanolu – zastavení kvašení = chemická rovnováha) –nápoje s vyšším obsahem alkoholu se buď destilují nebo míchají z čistého EtOH

17 Pivo Slad –zdroj sacharidů pro kvašení –rmutování = postupné zahřívání sladu, štěpení škrobu amylázami na maltózu Chmelové látky –zdroj hořké chuti –dnes přidáván obvykle chmelový extrakt Voda –vliv na chuť –obvykle z pivovarských studní

18 Kvašení piva 7-14 dní, 8-11°C Maltóza je zkvašena na EtOH a CO 2 –Vsádkové kvašení (kádě) –Kontinuální kvašení (trubky) Oddělení kvasnic Zrání piva (20-60 dnů) –dokvašování –chemické reakce s vlivem na chuť

19 Víno Kvašený nápoj z vinného moštu Kvašení sacharóza  EtOH + CO 2 –Saccharomyces cerevisiae Podle cukernatosti hroznů zůstane část cukru nezkvašena – dělení vín na suchá až sladká Barva závisí na odrůdě a technice lisování Šumivá vína – CO 2 se nenechá unikat Perlivá vína – sycená CO 2

20 Bioethanol Potenciální náhrada benzínu –do 20% je možné neomezené přidávání do benzínu –přes 20% potřeba přeřídit motory –nižší výhřevnost – vyšší spotřeba Produkce ze sacharidů –sacharóza – nejjednodušší kvašení, ale drahá, v Brazílii –škrob – jednoduché kvašení, ale drahý, v EU včetně ČR –celulóza – obtížné kvašení, levná a dostupná, nepropracované technologie

21 Sacharóza V Brazílii se jezdí až na 100% EtOH Levný řepný cukr Vývoz EtOH Vypalování pralesů kvůli plantážím třtiny

22 Škrob Přebytky zemědělství (EU) Jednoduchá technologie – rozklad, kvašení Drahá surovina –zemědělství má vysokou spotřebu energie –příliš mnoho dopravy suroviny –potenciál genetických modifikací Mnohdy až pasivní bilance energie (na litr EtOH se spotřebuje více nafty) –potřeba optimalizace Zdražování potravin

23 Celulóza Nejrozšířenější a nejlevnější (dřevo) Možnost využít odpad (piliny, starý papír…) Obtížná technologie –celulóza je krystalická – obtížný rozklad na monosacharidy –doprovázena ligninem a hemicelulózami – obtížné oddělení komplexu

24 Celulóza Technologie dosud ve stádiích experimentů – potenciál zefektivnění Rozklad dřeva napařováním, máčením v horké H 2 SO Biologický potenciál –dřevokazné houby – rozklad ligninu (ale konzumují celulózu) –některé bakterie mají celulolytické enzymy (ale neumí rozložit lignin) –konstrukce GMO

25 Produkce látek pomocí MO Mikrobiální metabolismus má schopnost syntézy velkého množství zajímavých chemických látek Metabolismus je obvykle ekonomicky regulován a nemá velké přebytky Nutnost donutit organismus k přebytkům –změněná aktivita některého enzymu –poškozená regulace metabolismu –nefyziologické podmínky kultivace –odstraňování produktů – posun chemické rovnováhy

26 Výroba kyseliny citrónové Aspergillus niger – plíseň výchozí surovina melasa – odpad při výrobě cukru aerobní proces, vyžaduje hodně kyslíku mutovaná forma organismu s málo aktivní citrátizomerázou –hromadění citrónové kyseliny –nedostatek oxalátu – syntéza z pyruvátu a CO 2 –výtěžek obvykle přes 100% vneseného cukru

27 Produkce aminokyselin Krmivo Potravinářská surovina (glutamát) Doplněk stravy (růst svalů, podpora sexuálních funkcí…) Výchozí surovina pro další chemické syntézy Výhoda – biotechnologicky připravené aminokyseliny mají jen konfiguraci L bakteriální syntéza – mutované kmeny s poškozenou regulací

28 Výroba octa Ocet = cca 8% kyselina octová Octové bakterie (Acetobacter aceti) V ocetnicích Tradiční aplikace imobilizovaných MO (na bukových pilinách) Oxidace sacharidů na octovou kyselinu –přísně aerobní proces –musí se udržet vyšší koncentrace substrátu, jinak je oxidace úplná až na CO 2 a H 2 O Podle suroviny a mikroorganismů vznik minoritních dalších kyselin (propionová, mléčná, galaktouronová…)  různé příchuti octa

29 Mikrobiální „bioplasty“ Některé bakterie produkují zásobní látky na bázi polyhydroxyalkanových kyselin (PHA) –zásoba uhlíku –  -hydroxymáselná –  -hydroxyvalerová – … Tyto polymery mají charakter plastických hmot = potenciální náhrada klasických ropných plastů Nevýhoda = vysoká cena (10x – 100x vyšší než z ropy) – zatím jen speciální použití (lékařské implantáty apod.) Výhoda = plně recyklovatelné

30 Mikrobiální „bioplasty“ Zásobní látky jsou produkovány ve stacionární fázi růstu a při nevyváženém růstu (hodně C, málo N) Složení polymeru závisí na kultivačních podmínkách a živinách – možnost ovlivnit Možnost využít odpadních surovin

31 Mikrobiologická likvidace odpadů MO dokáží rozložit velké množství chemických látek na neškodné Využití i v likvidaci odpadů Čištění odpadních vod – odstraňování organických látek, amoniaku, síranů… Likvidace pevných odpadů - kompostování

32 Čištění odpadních vod Stále stoupající požadavky na čistotu odpadních vod –organické znečištění –anorganické látky (amoniak, těžké kovy…) –speciální znečištění (perzistentní polutanty) V přirozených vodách žije velké množství MO schopných rozkladu těchto látek Samočisticí schopnost přirozené vody V čističkách jsou tyto přirozené procesy urychlovány popř. selektivně regulovány

33 Samočištění vody = Selfpurification Soubor přirozených procesů vedoucích k odstranění znečištění vody Faktory samočištění –Fyzikální – přestup kyslíku, sedimentace, odplavování… –Chemické – chemické reakce (redoxní, srážecí, neutralizační) –Biologické – potravní řetězce

34 Biologické samočištění vody Organické látky V potravních řetězcích dochází k přeměně nečistot na –biomasu –minerální látky – možné pokračování potravního řetězce autotrofními organismy Mezi tvorbou biomasy a rozkladem existuje rovnováha Oba procesy probíhají aerobně i anaerobně –v anaerobním prostředí neúplná mineralizace (org. kyseliny, methan…)

35 Biologické samočištění vody Saprobní společenstva Biologická rovnováha – odolnost k výchylkám 3 fáze společenstva – dle znečištění –polysaprobní – převaha redukčních procesů (fermentace) –mezosaprobní – rovnáváha oxidačních a redukčních procesů –oligosaprobní – převaha oxidačních procesů

36 Autolýza Samovolný rozklad těl uhynulých organismů pomocí vlastních enzymů První stupeň rozkladu biomasy

37 Rozklad bílkovin Proteázy – štěpení bílkovin na peptidy a aminokyseliny Deaminázy – odštěpování aminoskupin na NH 3 Dekarboxylázy – odštěpování CO 2 Anaerobně vznikají nejrůznější páchnoucí látky (sulfan, merkaptany…) Aerobně bez zápachu

38 Rozklad dusíkatých látek Aerobně i anaerobně Odštěpování amoniaku z organických látek (amonifikace) –Proteus, Micrococcus -aerobně –Clostridium –anaerobně Nitrifikace – oxidace amoniaku – aerobní proces – zisk energie –NH 4 +  NO 2 - Nitrosomonas, Nitrococcus, Streptomyces, Nocardia… –NO 2 -  NO 3 - Nitrobacter, Nitrococcus, Nitrospira…

39 Rozklad sirných látek Redukce síranů – produkce H 2 S – anaerobní proces –i další oxidované sloučeniny síry –sírany fungují jako terminální akceptory elektronů –Desulfovibrio, Desulfotomaculum Oxidace sulfidů a sulfanu na síru nebo sírany –aerobně – Thiobacillus, Thiobacterium… –fotosynteticky anoxicky – purpurové bakterie (Rhodospirillum, Rhodomicrobium…)

40 Rozklad tuků = lipolýza extracelulární lipázy Pseudomonas, Yarowia (kvasinka), Mucor, Aspergillus, Penicillium (plísně) zejména aerobní proces anaerobně vznik uhlovodíků

41 Rozklad sacharidů polysacharidy  monosacharidy  začlenění do metabolismu Anaerobně –monosacharidy  ferm. produkty  methan –fermentace – enterobakterie, Clostridium… –methanogeneze – Methanococcus, Methanobacterium… Aerobně – úplná oxidace na CO 2 a vodu

42 Čištění odpadních vod Odpadní vody průmyslové a splaškové –různé znečišťující látky 3 fáze procesu –mechanická – sedimentace, filtrace –biologická – odbourávání organických látek –chemická – odstraňování chemických látek Mnoho uspořádání –přirozené – kontrolovaný přirozený proces – nádrže, rybníčky… –aktivační – intenzifikace procesů – vznik a separace aktivovaného kalu

43 Aktivovaný kal Směsná kultura mikroorganismů vzniklá dlouhodobým provzdušňováním odpadní vody Pomnožení a koncentrace přirozené mikroflóry –bakterie –prvoci –kvasinky –vláknité houby Vznik vloček (flokulí) Správná flokulace poukazuje na kvalitu aktivovaného kalu

44 Kompostování =Aerobní proces likvidace pevných odpadů –městské odpady, biologický odpad, aktivovaný kal, průmyslové odpady, dřevní hmota… –dochází i k rozkladu některých nebezpečných látek (výbušniny, pesticidy…) Redukce objemu odpadu –Rozklad organických látek –Snížení obsahu vody V průběhu procesu dochází ke zvýšení teploty - likvidace patogenních MO

45 Kompostování MO jsou obvykle přítomny v likvidovaném materiálu –organotrofní bakterie –vláknité houby –prvoci –vyšší organismy (hmyz, členovci…) V průběhu procesu dochází k zužování druhové pestrosti v důsledku zvyšování teploty –postupně mizí vyšší organismy, houby, aktinomycety a mezofilní bakterie –zůstávají termofilní bakterie

46 Kompostování Pro aerobní procesy je třeba zajistit dostatečné množství kyslíku (5-10%) –přesto místy anaeorbní procesy – vznik organických kyselin – rozklad aerobními druhy –cirkulace vzduchu - trubky –obracení kompostu – nebezpečí vychladnutí

47 Kompostování Velký odpar vody (až 0,8 g / 1 g organické hmoty) –nutná regulace (regulace teploty, udržování vlhkého prostředí, zkrápění…) –nedostatek vody zastavuje rozkladné procesy

48 Kompostování Likvidace patogenních MO –většina patogenů má teplotní optimum cca 37°C –vyšší teploty je ničí –při kompostování se teplota zvyšuje až na 80°C – likvidace patogenů –někdy se jen udržuje nižší teplota (60°C) po delší dobu – také likvidace

49 Kompostování Využití kompostu –hnojivo – nesmí obsahovat toxické látky (těžké kovy, nezreagované polutanty…) –spálení – nebezpečné komposty

50 Geneticky modifikované organismy Organismy, jejichž genetická informace byla cíleně změněna –Za GMO není považován organismus vzniklý náhodnou mutagenezí, fúzí protoplastů, výměnou genetického materiálu přirozeným postupem ani šlechtěním. Typické genetické modifikace –přidání genetického materiálu z jiného organismu –cílená mutace genetického materiálu –cílené odstranění části genetického materiálu

51 Cíle genetických manipulací Vznik organismů z novými či pozměněnými vlastnostmi Produkce bílkoviny z jiného organismu –výroba inzulínu –výroba enzymů Produkce určité látky –mutace v enzymu  hromadění meziproduktu –odstranění regulace  nadprodukce –přidání genu  modifikace přirozeného metabolitu

52 Cíle genetických manipulací Zvýšení odolnosti organismu –přidání genů pro rezistenci k některým látkám –produkce toxinů proti škůdcům –zvýšení teplotní odolnosti Biosenzory –Geny pro produkci snadno měřitelné odpovědi na podnět (luminiscence, produkce barevné látky apod.)

53 Cíle genetických manipulací Vylepšení produktů –rychleji zrající rajčata –rýže obohacená o vitamín A –svítící rybičky Věda a výzkum –exprese Green Fluorescence Protein v tkáních či buňkách –výzkum funkce a exprese genů –výzkum metabolismu

54 Geneticky modifikované organismy Zákon 78/2004 sb. Autorizace nakládání s GMO –uzavřené nakládání – GMO nesmí proniknout ven –uvádění do životního prostředí – mimo uzavřený prostor –uvádění do oběhu – předání třetím osobám

55 Autorizace Nutná pro povolení nakládání Zpracovává MŽP Hodnocení rizik – zpracovává poradce (vysokoškolák s praxí v oboru GMO) Popis genetické modifikace Popis nakládání Popis zabezpečení

56 Hodnocení rizik Zdraví lidí Působení na zvířata a rostliny Usídlení a rozšíření v životním prostředí Přirozený přenos změněného genetického materiálu

57 Biosenzory Zařízení pro detekci analytu využívající biologický materiál

58 Biosenzory Analyt = chemická látka, záření, organismus… Biologický materiál –enzymy –protilátky –celé mikrobiální buňky –buněčné součásti –tkáně a pletiva

59 Biologický materiál Biosenzor využívá schopnost biologického materiálu rozpoznat analyt vysoká specifita (enzymy, protilátky) –např. pomocí glukózaoxidázy je možné detekovat glukózu ve směsi dalších monosacharidů skupinová specifita (mikroorganismy) –např. detekce polutantů pomocí MO schopných je odbourávat

60 Převodník Biologický materiál musí po rozpoznání analytu vyslat nějaký signál –dobře měřitelný –převod na jiný signál snadno zaznamenatelný (elektrický) Signály –světlo (luminiscence) –změna elektrického potenciálu –produkce barviva –změna fluorescence –…


Stáhnout ppt "Biotechnologie Jakákoliv technologie využívající biologický materiál –celé organismy (bakterie, plísně, rostliny…) –části organismů (izolované tkáně a."

Podobné prezentace


Reklamy Google