Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Podobné prezentace


Prezentace na téma: "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."— Transkript prezentace:

1 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce rovnoběžníku Známe-li dvě strany a úhel jimi sevřený

2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. a  c ; AB  CD b  d ; BC  DA Rovnoběžník a jeho vlastnosti Rovnoběžník (kosodélník) je čtyřúhelník, který má rovnoběžné protilehlé strany. Zopakujeme základní vlastnosti, které nám často pomohou při pozdějších konstrukcích.

3 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. b = d ;  BC  =  DA  a = c ;  AB  =  CD  Rovnoběžník a jeho vlastnosti Protější strany rovnoběžníku mají stejnou délku.

4 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.  =  ;   ABC  =   CDA   =  ;   DAB  =   BCD  Rovnoběžník a jeho vlastnosti Protější úhly rovnoběžníku mají stejnou velikost.

5 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.  +  =  +  =  +  =  +  = 180°  +  +  +  = 360° Rovnoběžník a jeho vlastnosti Součet velikostí sousedních úhlů je 180 stupňů. Součet velikostí všech úhlů je 360 stupňů.

6 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Průsečík úhlopříček je středem souměrnosti rovnoběžníku  AS   BS  Rovnoběžník a jeho vlastnosti Úhlopříčky se navzájem půlí. =  SC   SD  =

7 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Základem při této konstrukci bude konstrukce trojúhelníku podle věty sus. A nyní již přikročíme ke konstrukci. Sestrojte rovnoběžník ABCD, ve kterém a=6 cm, b=4 cm,  =75°. b = d 75°

8 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Základem je tedy, jak již bylo řečeno, konstrukce trojúhelníku podle věty sus, čímž získáme body A, B a D. Náčrt a rozbor 75° Následuje sestrojení bodu C. E k p l m

9 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. 1. AB;  AB  =a=6 cm Zápis a konstrukce E k p l m AB 3. k; k(A; d=b=4 cm) 4. D; D   AE  k D 5. l; l(B; b=4 cm) 6. m; m(D; c=a=6 cm) 7. C; C  l  m C 8. Rovnoběžník ABCD 2. BAE;  BAE  =  =75°

10 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výsledný rovnoběžník Úloha má jedno řešení. (v polorovině určené úsečkou AB a bodem D) Konstrukci proměříme, zda odpovídá zadání a trojúhelník vytáhneme silněji. A takto vypadá výsledek.

11 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení Sestrojte rovnoběžník ABCD, jestliže: 1.) a=5 cm,  =60°, b= 3,5 cm 2.) c=7 cm,  =45°, d= 4 cm 3.) a=6 cm,  =120°, d= 3 cm (Rada: c = a,  =  ) (Rada:  = , d = b)


Stáhnout ppt "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."

Podobné prezentace


Reklamy Google