Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Podobné prezentace


Prezentace na téma: "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."— Transkript prezentace:

1 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Základní konstrukce Rovnoběžky

2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rovnoběžky Rovnoběžky jsou dvě či více přímek v rovině, které se nikde neprotínají (mají stejný směr, ale neprotínají se v žádném bodě). Zapisujeme: p  q  r, čteme: přímka p je rovnoběžná s přímkami q a r. Zapisujeme: p  q, čteme: přímka p je rovnoběžná s přímkou q.

3 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rovnoběžky Rovnoběžné mohou být i polopřímky a úsečky. Zapisujeme:  AB   CD   EF.Zapisujeme: AB  CD  EF.

4 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Kolmice k rovnoběžce Jakou vlastnost má kolmice sestrojená k jedné z rovnoběžných přímek? Kolmice sestrojená k jedné z rovnoběžných přímek je zároveň i kolmicí pro všechny ostatní rovnoběžné přímky (je kolmá i na všechny ostatní rovnoběžky). a  p a  q a  r

5 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rovnoběžky Co se tedy stane, když narýsujeme dvě kolmice po sobě? Tedy přesněji řečeno, co se stane, když sestrojíme kolmici k dané přímce a následně k sestrojené kolmici novou kolmici? Druhá kolmice v pořadí je rovnoběžkou k zadané přímce. Uvedený postup můžeme s výhodou používat při rýsování rovnoběžek! p  q 

6 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce rovnoběžky Rovnoběžku lze nejsnadněji narýsovat pomocí trojúhelníku s ryskou p q a to tak, že se ryska přiloží na danou přímku a podle hrany trojúhelníku narýsujeme pomocnou kolmici k této přímce. p  q Celý postup pak zopakujeme ještě jednou, ale tentokrát rýsujeme kolmici k pomocné kolmici. Druhá narýsovaná kolmice je rovnoběžkou k původní přímce.

7 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce rovnoběžky procházející daným bodem mimo přímku I tentokrát lze nejsnadněji rovnoběžku narýsovat pomocí trojúhelníku s ryskou p q, a to tak, že se ryska přiloží na přímku a podle hrany trojúhelníku narýsujeme pomocnou kolmici. K této pomocné kolmici pak další kolmici procházející již daným bodem A. q  p A A  qA  q

8 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady: 1.) Narýsuj úsečku |AB|= 5 cm a sestroj k ní rovnoběžnou přímku, polopřímku a úsečku libovolné velikosti.

9 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady: 2.) Narýsuj libovolný trojúhelník ABC a rovnoběžky k jednotlivým stranám procházející protilehlými vrcholy. Co vznikne? Vznikly další tři shodné trojúhelníky.

10 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady: 3.) Narýsuj dvě na sebe kolmé přímky a ke každé z nich jednu rovnoběžku. Jaký geometrický útvar vznikne? Vznikl obdélník.

11 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Přeji Vám mnoho přesnosti při rýsování!


Stáhnout ppt "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."

Podobné prezentace


Reklamy Google