Čihák Plzeň 2013, 2014 Funkce 10 Kvadratická funkce 2.

Slides:



Advertisements
Podobné prezentace
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Didaktika matematiky Akademický rok: 2003 – 2004 Zpracoval: Jan.
Advertisements

Rozcvička Urči typ funkce:
Exponenciální funkce Exponenciální funkcí o základu a nazýváme každou část funkce, která je dána rovnicí: Dostupné z Metodického portálu ISSN: 1802–4785,
Složitější funkce tangens a kotangens
F U N K C E III Funkce 20 Goniometrické funkce s absolutní hodnotou
F U N K C E II Funkce 5 Mocninná funkce 3 Čihák Plzeň 2013, 2014.
Mgr. Vladimír Wasyliw - s využitím práce Mgr. Petra Šímy – SŠS Jihlava
Pojem funkce Lineární funkce Kvadratické funkce
Kvadratické nerovnice
Cyklista projížděl při závodě trať dlouhou 210 km rychlostí 35 km za hodinu. Napište rovnici funkce vyjadřující závislost vzdálenosti s od cíle na čase.
Základy infinitezimálního počtu
Rozcvička Urči typ funkce:.
KVADRATICKÁ FUNKCE.
Matematika Téma č. 5 Funkce Základní pojmy /main terms/основные термины  Reálná funkce f jedné reálné promĕnné x je množina f uspořádaných dvojic.
určení vrcholu paraboly sestrojení grafu
Čihák Plzeň 2013, 2014 Funkce 11 Kvadratická funkce 3.
Název školy Integrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektu CZ.1.07/1.5.00/ Inovace vzdělávacích metod.
CZECH SALES ACADEMY Trutnov – střední odborná škola s.r.o.
Kvadratická funkce Lukáš Zlámal.
2.1.2 Graf kvadratické funkce
Exponenciální funkce Körtvelyová Adéla G8..
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Kvadratická funkce. Co je to funkce Každému prvku x z definičního oboru je přiřazeno právě jedno číslo y z oboru hodnot x je nezávisle proměnná y je závisle.
 y= ax 2 + bx + c  a,b,c jsou koeficienty kvadratické funkce  a  0  ax 2 kvadratický člen  bx lineární člen  c absolutní člen - číslo.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A15 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
Procvičování vlastnosti kvadratické funkce. Určete vlastnosti funkcí z minulého procvičování.
Funkce lineární kvadratická nepřímá úměrnost exponenciální
graf kvadratické funkce
vlastnosti lineární funkce
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B07 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
Čihák Plzeň 2013, 2014 Funkce 4 Mocninná funkce 2.
2. M Definiční obor, obor funkce. Vrchol paraboly: V=[1;-4]  Minimum funkce (nejnižší bod)  Mění se průběh funkce V=[1;-4]  Minimum funkce (nejnižší.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
2.1.1 Kvadratická funkce. Kvadratická funkce se nazývá každá funkce, daná ve tvaru kde je reálné číslo různé od nuly, jsou libovolná reálná čísla. Definičním.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
9. Vlastnosti funkcí – rostoucí a klesající funkce - příklady
Graf kvadratické funkce
Průběh funkce 2. M.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Kvadratická funkce a její graf Mic haela Koubová Gymnázium, Prachatice, Zlatá stezka 137 Literatura: KOČANDRLE, M., BOČEK, L.: Matematika pro gymnázia.
Matematický milionář Foto: autor Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Vrchol paraboly.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Rozcvička Urči typ funkce:
Cvičení V této kapitole můžete procvičit probrané téma. Jednotlivá cvičení obsahují správné řešení s postupem. Po zobrazení zadání se dalším(dalšími) kliknutím(kliknutími)
VY_32_INOVACE_FCE1_08 Funkce 1 Kvadratická funkce.
VY_32_INOVACE_RONE_08 Rovnice a nerovnice Kvadratická funkce.
Rozcvička Urči typ funkce:
7.6 Doplnění na čtverec Mgr. Petra Toboříková
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor: Mgr. Vladimíra Houšková Název materiálu:
Graf, vlastnosti - výklad
2.1.1 Kvadratická funkce.
Rozcvička Urči typ funkce:
8. Vlastnosti funkcí – monotónnost funkce
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Matematický milionář Foto: autor
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Kvadratická funkce Funkce daná rovnicí , kde . Definiční obor:
Výuka matematiky v 21. století na středních školách technického směru
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Gymnázium, Prachatice, Zlatá stezka 137
Lineární funkce 2 šestiminutovka
Lineární funkce 3 desetiminutovka
Kvadratická funkce Matematika – 9.ročník VY_32_INOVACE_
Transkript prezentace:

Čihák Plzeň 2013, 2014 Funkce 10 Kvadratická funkce 2

Kvadratická funkce f je určena rovnicí : y=-(x-2) Sestrojte graf funkce, určete vlastnosti funkce. Graf Vlastnosti: D(f)=R, H(f)= (-∞;4 není prostá klesající na 2;∞ rostoucí na (-∞;2 parabola je zdola otevřená, vrchol je nejvyšším bodem, souřadnice vrcholu: V=[2;4], obecně V=[m;n]. dál dál

zpět

y= a(x-m) 2 +n … y=ax 2 +bx+c Lze odvodit : Tedy souřadnice vrcholu paraboly jsou:

Kvadratická funkce f je určena rovnicí : y= x 2 +4x+3. Sestrojte graf funkce, určete vlastnosti funkce. Graf Vlastnosti: D(f)=R, není prostá, grafem je parabola souřadnice vrcholu: klesající na (-∞;-2 rostoucí na -2;+∞) parabola je shora otevřená, vrchol je nejnižším bodem, H(f)=-1;+∞)

zpět