IX. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 23.DUBNA 2008 F4110 Kvantová fyzika atomárních soustav letní semestr 2007 - 2008.

Slides:



Advertisements
Podobné prezentace
Teoretické základy Ramanovy spektroskopie
Advertisements

a víceatomových molekul
Geometrické znázornění kmitů Skládání rovnoběžných kmitů
3.2 Vibrace jader v krystalové mříži.
Lekce 2 Mechanika soustavy mnoha částic
Shrnutí z minula vazebné a nevazebné příspěvky výpočetní problém PBC
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
5.1 Vlnová funkce 5 Úvod do kvantové mechaniky 5.2 Operátory
3 Elektromagnetické pole
2.3 Mechanika soustavy hmotných bodů Hmotný střed 1. věta impulsová
Gravitační vlny v přesných řešeních Einsteinových rovnic RNDr
Daniel Svozil Laboratoř informatiky a chemie FCHT
6 Kvantové řešení atomu vodíku a atomů vodíkového typu
Kmitavý pohyb 1 Jana Krčálová, 8.A.
Konstanty Gravitační konstanta Avogadrova konstanta
II. Statické elektrické pole v dielektriku
Radiální elektrostatické pole Coulombův zákon
Základy vlnové mechaniky - vlnění
METODA KONEČNÝCH PRVKŮ
VII. Neutronová interferometrie II. cvičení KOTLÁŘSKÁ 7. DUBNA 2010 F4110 Kvantová fyzika atomárních soustav letní semestr
OBSAH PŘEDMĚTU FYZIKA Mgr. J. Urzová.
Elektrické pole Elektrický náboj, Elektrické pole
Tlumené kmity pružná síla brzdná síla?.
OBSAH PŘEDMĚTU FYZIKA 1 Mgr. J. Urzová.
Jak vyučovat kvantové mechanice?
Fyzikální systémy hamiltonovské Celková energie systému je vyjádřená Hamiltonovou funkcí H – hamiltoniánem Energie hamiltonovského systému je funkcí zobecněné.
Jak pozorujeme mikroskopické objekty?
Shrnutí z minula Heisenbergův princip neurčitosti
Mechanika soustavy hmotných bodů zde lze stáhnout tuto prezentaci i učební text, pro vaše pohodlí to budu umisťovat také.
Elektron v periodickém potenciálovém poli - 1D
Kmity HRW kap. 16.
Kmitavý pohyb matematického kyvadla a pružiny
I. Měřítka kvantového světa Cvičení
těžkosti oproti atomům: není centrální symetrie (důležitá bodová grupa molekuly) elektrony a jádra, vzájemné interakce i = 1,...., N elektrony N =  Z.
Str. 1 TMF045 letní semestr 2006 IX Vlnová funkce jako pravděpodobnost ve fázovém prostoru lekce (IX - XI)
Fyzika kondenzovaného stavu
CO 2 OCO 11 22 33 H2OH2O jádra:. R A -R B U """" a D 0.
I. Měřítka kvantového světa Cvičení KOTLÁŘSKÁ 2. BŘEZNA 2011 F4110 Kvantová fyzika atomárních soustav letní semestr
IX. Vibrace molekul a skleníkový jev cvičení
Kmity krystalové mříže  je nutné popisovat pomocí QM  energie tepelného pohybu je kvantovaná  je principiálně nemožné pozorovat detaily atomového a.
Kmity.
Kmitání.
Vektorový součin a co dál?
str. 1 TMF045 letní semestr 2006 VI a VII Vlastní řešení Hamiltoniánu s komplexní energií metoda komplexního škálování.
Moment setrvačnosti momenty vůči souřadnicovým osám x,y,z
Základy kvantové mechaniky
Kmitání mechanických soustav 1 stupeň volnosti – vynucené kmitání
IV. Elektronová optika cvičení KOTLÁŘSKÁ 20. BŘEZNA 2013 F4110 Kvantová fyzika atomárních soustav letní semestr
X. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 2. KVĚTNA 2012 F4110 Kvantová fyzika atomárních soustav letní semestr
Dynamický absorbér kmitů
KVAZISTACIONÁRNÍ STAVY a RELACE  E.  t   WIGNER—WEISSKOPFŮV ROZPAD (Abstraktní Andersonův Hamiltonián) III.
VIII. Vibrace víceatomových molekul cvičení
II. Tepelné fluktuace: Brownův pohyb Cvičení KOTLÁŘSKÁ 5. BŘEZNA 2014 F4110 Kvantová fyzika atomárních soustav letní semestr
VI. Neutronová interferometrie cvičení KOTLÁŘSKÁ 11. DUBNA 2012 F4110 Kvantová fyzika atomárních soustav letní semestr
6 Kvantové řešení atomu vodíku a atomů vodíkového typu 6.2 Kvantově-mechanické řešení vodíkového atomu … Interpretace vlnové funkce vodíkového atomu.
Fyzika pro lékařské a přírodovědné obory Ing. Petr Vácha ZS – Termika, molekulová fyzika.
5.4 Časově nezávislá Schrödingerova rovnice 5.5 Vlastnosti stacionární vlnové funkce 5.6 Řešení Schrödingerovy rovnice v jednoduchých případech Fyzika.
III. Tepelné fluktuace: lineární oscilátor Cvičení KOTLÁŘSKÁ 12. BŘEZNA 2014 F4110 Kvantová fyzika atomárních soustav letní semestr
Kmity, vlny, akustika Pavel KratochvílPlzeň, ZS Část I - Kmity.
1 X. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 28.DUBNA 2010 F4110 Kvantová fyzika atomárních soustav letní semestr
Harmonický oscilátor – pružina pružina x pohybová rovnice počáteční podmínky řešení z počátečních podmínek dostáváme 0.
Mechanické kmitání, vlnění
VIII. Vibrace víceatomových molekul
Fyzika kondenzovaného stavu
Kmity HRW2 kap. 15 HRW kap. 16.
III. Tepelné fluktuace: lineární oscilátor Cvičení
2. přednáška Differenciální rovnice
IX. Vibrace molekul a skleníkový jev
Kmity, vlny, akustika Část I – Kmity, vlny Pavel Kratochvíl
Mechanické kmitání, vlnění
Transkript prezentace:

IX. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 23.DUBNA 2008 F4110 Kvantová fyzika atomárních soustav letní semestr

Úvodem Exkurs do prostorové symetrie vibrací a využití teorie bodových grup a jejich representací Proč (a kdy) nemusíme kvantovat vibrační pohyb molekul? Jaké jsou podmínky, aby určitá vibrace byla IR aktivní? Jaký je vliv anharmonických oprav? Skleníkový efekt: přehled Skleníkový efekt: role skleníkových plynů

3 Minule: Adiabatický Hamiltonián víceatomové molekuly Explicitní dynamika jader jako hmotných bodů. Elektrony jako nehmotný tmel stabilizující molekulu svým příspěvkem do potenciální energie U. Molekula může volně letět prostorem a rotovat jako celek. Kromě toho koná vnitřní pohyby – vibrace. DVĚ CESTY Globální pohyby jsou zabudovány od začátku tím, že potenciální energie je vyjádřena jako funkce relativních vzdáleností atomů To byl postup v případě dvou-atomové molekuly v F IV. Globální pohyby jsou pominuty, molekula je umístěna v prostoru. Minimum potenciální energie určuje rovnovážné polohy atomů, kolem nichž dochází k malým vibracím. Dodatečně je využito toho, že potenciální energie se nemění při infinitesimálních translacích a rotacích molekuly jako tuhého celku. Tak budeme nyní postupovat.

4 Minule: Harmonická aproximace Rovnovážné polohy atomů Výchylky Harmonická aproximace … Taylorův rozvoj potenciální energie do 2. řádu Pohybové rovnice Soustava vázaných diferenciálních rovnic. V harmonické aproximaci lineárních. Přepíšeme maticově.

5 Minule: Konfigurační prostor silové konstanty (tuhosti) Zavedeme konfigurační prostor dimense 3N Pohybové rovnice v maticovém tvaru Matice hmotností reálná symetrická positivně definitní diagonální Matice tuhostí reálná symetrická positivně semi-definitní má vlastní číslo 0

6 Porovnejme jeden lineární oscilátor maticový zápis vázaných oscilátorů Zobecněný problém vlastních vektorů Minule: Normální kmity sekulární rovnice NORMÁLNÍ KMIT ("mód") dynamická matice

7 Minule: Ortogonalita v zobecněném problému vlastních čísel vzpomínka aplikace na daný problém zpětná substituce dá zobecněné relace ortogonality

8 Čtyři otázky 1.Jak systematicky využít symetrie polyatomických molekul k zjednodušení dynamického problému v harmonické aproximaci 2.Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky 3.Kdy lze kmity molekul pozorovat v infračervené spektroskopii 4.Jak se projeví (třeba i slabé) anharmonické opravy … A JAK TOTO VŠECHNO SOUVISÍ SE SKLENÍKOVÝM JEVEM

9 Čtyři otázky 1.Jak systematicky využít symetrie polyatomických molekul k zjednodušení dynamického problému v harmonické aproximaci 2.Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky 3.Kdy lze kmity molekul pozorovat v infračervené spektroskopii 4.Jak se projeví (třeba i slabé) anharmonické opravy … A JAK TOTO VŠECHNO SOUVISÍ SE SKLENÍKOVÝM JEVEM

Využití symetrie při studiu vibrací molekul:

Využití symetrie při studiu vibrací molekul: příští cvičení

Klasický a kvantový přístup k molekulárním vibracím

13 Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Střední hodnoty pozorovatelných splňují Ehrenfestovy teorémy (důsledek SR):

14 KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Střední hodnoty pozorovatelných splňují Ehrenfestovy teorémy (důsledek SR): Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky

15 KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky

16 KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Tato vlnová funkce 3n proměnných obsahuje úplnou informaci o systému, je však velmi nenázorná a také obtížná k manipulaci. Rozhodně se nepodobá představě o klasických kmitajících částicích. Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky

17 KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Tato vlnová funkce 3n proměnných obsahuje úplnou informaci o systému, je však velmi nenázorná a také obtížná k manipulaci. Rozhodně se nepodobá představě o klasických kmitajících částicích. V harmonické aproximaci je však oba pohledy možno těsně sblížit  Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky

18 Dva postupy vhodné pro harmonickou aproximaci "STANDARDNÍ POSTUP" Od úplné SR přejdeme k hledání stacionárních stavů z nečasové SR Pouze v harmonické aproximaci je možná separace proměnných (nebudeme provádět) nezávislé normální kmity SMĚREM KE "KLASICE" Počítáme střední hodnoty pozoro- vatelných v závislosti na čase. To odpovídá klasickému obrazu. Pro časovou změnu platí Ehrenfestův teorém Tyto vztahy mají podobu pohybových rovnic, které však zpravidla nejsou uzavřené. Harmonická aproximace je v tom výjimečná operátor časové změny

19 Dva postupy vhodné pro harmonickou aproximaci "STANDARDNÍ POSTUP" Od úplné SR přejdeme k hledání stacionárních stavů z nečasové SR Pouze v harmonické aproximaci je možná separace proměnných (nebudeme provádět) nezávislé normální kmity SMĚREM KE "KLASICE" Počítáme střední hodnoty pozoro- vatelných v závislosti na čase. To odpovídá klasickému obrazu. Pro časovou změnu platí Ehrenfestův teorém Tyto vztahy mají podobu pohybových rovnic, které však zpravidla nejsou uzavřené. Harmonická aproximace je v tom výjimečná operátor časové změny

20 "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Historicky byl harmonický oscilátor nejlepší kandidát pro kvantové vyšetřování, protože měl kvasiklasický charakter a dal se proto ochotně zpracovat již tzv. naivně kvantovými metodami. Podobně tomu je pro všechny Hamiltoniány nejvýše kvadratické v kanonických proměnných (volná částice, částice v homogenním elektrickém i magnetickém poli, harmonický oscilátor, parametricky modulovaný harmonický oscilátor apod.). Samozřejmě tím není kvantová mechanika zbytečná, již první anharmonické opravy vedou k rozdílným výsledkům. Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky

21 "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Navíc se oscilující klubka během času nerozplývají, jejich neurčitost zůstává konečná. Vezměme jeden oscilátor s amplitudou rozkmitu : Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky

22 "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Navíc se oscilující klubka během času nerozplývají, jejich neurčitost zůstává konečná. Vezměme jeden oscilátor s amplitudou rozkmitu : Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky  koherentní stavy

23 "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Historicky byl harmonický oscilátor nejlepší kandidát pro kvantové vyšetřování, protože měl kvasiklasický charakter a dal se proto ochotně zpracovat již tzv. naivně kvantovými metodami. Podobně tomu je pro všechny Hamiltoniány nejvýše kvadratické v kanonických proměnných (volná částice, částice v homogenním elektrickém i magnetickém poli, harmonický oscilátor, parametricky modulovaný harmonický oscilátor apod.). Samozřejmě tím není kvantová mechanika zbytečná, již první anharmonické opravy vedou k rozdílným výsledkům. Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky

24 "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Historicky byl harmonický oscilátor nejlepší kandidát pro kvantové vyšetřování, protože měl kvasiklasický charakter a dal se proto ochotně zpracovat již tzv. naivně kvantovými metodami. Podobně tomu je pro všechny Hamiltoniány nejvýše kvadratické v kanonických proměnných (volná částice, částice v homogenním elektrickém i magnetickém poli, harmonický oscilátor, parametricky modulovaný harmonický oscilátor apod.). Samozřejmě tím není kvantová mechanika zbytečná, již první anharmonické opravy vedou k rozdílným výsledkům. Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky

Infračervená absorpce molekulárními kmity

26 tlumení fenomenologicky přidáno Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace světelná vlna homogenní pole klasická pohybová rovnice efektivní náboj

27 tlumení fenomenologicky přidáno od elektrického dipólu molekuly přesněji: jeho části lineárně závislé na výchylce, zde tedy kde q je efektivní náboj Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace světelná vlna homogenní pole efektivní náboj klasická pohybová rovnice

28 tlumení fenomenologicky přidáno Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace světelná vlna homogenní pole efektivní náboj ustálené řešení klasická pohybová rovnice

29 tlumení fenomenologicky přidáno Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace světelná vlna homogenní pole efektivní náboj ustálené řešení klasická pohybová rovnice

30 tlumení fenomenologicky přidáno  w 00 Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace absorbovaný výkon světelná vlna homogenní pole efektivní náboj ustálené řešení klasická pohybová rovnice

31 Infračervená absorpce víceatomovými molekulami Systematicky: Hamiltonián doplníme o dipólovou interakci I zde platí klasické pohybové rovnice pro střední výchylky, očekáváme tedy resonance u charakteristických frekvencí normálních kmitů podmínka nenulových polarisovatelností (permanentní dipól nepomůže) záleží na polarisaci (směru) elektrického vektoru

32 Infračervená absorpce víceatomovými molekulami I zde platí klasické pohybové rovnice pro střední výchylky, očekáváme tedy resonance u charakteristických frekvencí normálních kmitů podmínka nenulových polarisovatelností (permanentní dipól nepomůže záleží na polarisaci (směru) elektrického vektoru CO 2 rozdílné efektivní náboje symetrický kmit … nevyvolá dipólovou polarisaci dipólový moment se váže na E y,z dipólový moment se váže na E x Systematicky: Hamiltonián doplníme o dipólovou interakci

Infračervená absorpce molekulárními kmity: kvantově

34 Infračervená absorpce víceatomovými molekulami kvantově Resonanční přechody v kvantové mluvě (zas připomínka hlavní přednášky) EfEf EiEi

35 Infračervená absorpce víceatomovými molekulami kvantově Resonanční přechody v kvantové mluvě (zas připomínka hlavní přednášky) EfEf EiEi

36 Infračervená absorpce víceatomovými molekulami kvantově Resonanční přechody v kvantové mluvě (zas připomínka hlavní přednášky) EfEf EiEi Bohrova podmínka:

37 Infračervená absorpce víceatomovými molekulami kvantově Resonanční přechody v kvantové mluvě (zas připomínka hlavní přednášky) EfEf EiEi Bohrova podmínka: absorpce fotonu + „kvantový přeskok“

38 Infračervená absorpce víceatomovými molekulami kvantově Resonanční přechody v kvantové mluvě (zas připomínka hlavní přednášky) EfEf EiEi Bohrova podmínka: absorpce fotonu + „kvantový přeskok“ Intensita absorpce (pravděpodobnost přechodu) Fermiho zlaté pravidlo

39 Infračervená absorpce víceatomovými molekulami kvantově Resonanční přechody v kvantové mluvě (zas připomínka hlavní přednášky) EfEf EiEi Bohrova podmínka: absorpce fotonu + „kvantový přeskok“ Intensita absorpce (pravděpodobnost přechodu) Fermiho zlaté pravidlo dovolený přechod zakázaný přechod výběrová pravidla

40 Infračervená absorpce víceatomovými molekulami kvantově Resonanční přechody v kvantové mluvě (zas připomínka hlavní přednášky) EfEf EiEi Bohrova podmínka: absorpce fotonu + „kvantový přeskok“ Intensita absorpce (pravděpodobnost přechodu) Fermiho zlaté pravidlo dovolený přechod zakázaný přechod výběrová pravidla Pro harmonický oscilátor přísné výběrové pravidlo: Proto a kvantová resonanční podmínka se shoduje s klasickou.

Infračervená absorpce molekulárními kmity: anharmonické jevy

42 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické

43 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické ekvidistantní hladiny

44 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické kubická korekce asymetrie potenciálu

45 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické kvartická korekce zde „měknutí“ potenciálu při vyšších energiích

46 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické anharmonický potenciál spojuje obě hlavní anharmonické opravy

47 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické ekvidistantní hladiny harmonického potenciálu

48 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické ekvidistantní hladiny harmonického potenciálu  postupně se odchylující hladiny anharmonického potenciálu

49 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické

50 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické

51 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické

52 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické Výběrové pravidlo je oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence.

53 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické Výběrové pravidlo je oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence.

54 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace víceatomové molekuly vyšší harmonické nezávislé normální kmity anharmonická vazba mezi normálními kmity

55 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace víceatomové molekuly vyšší harmonické nezávislé normální kmity anharmonická vazba mezi normálními kmity vyšší harmonické + kombinační frekvence

Oxid uhličitý

57 IR spektrum oxidu uhličitého CO 2 CO 2 symetrický kmit … nemá dipólový moment 1388 cm -1 dipólový moment se váže na E y,z 667 cm -1 dipólový moment se váže na E x 2349 cm -1

58 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1

59 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace TABULKA IR FREKVENCÍ

60 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

61 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

62 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

63 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

64 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

65 Sumární absorpční spektrum oxidu uhličitého CO 2  +  3716  + 2x  3609  2349  1388  667

66 Sumární absorpční spektrum oxidu uhličitého CO 2  +  3716  + 2x  3609  2349  1388  667 široké čáry … rotačně vibrační pásy

Další (skleníkové) molekuly

68 Zábavný přehled vibrací a IR spekter pro skleníkové molekuly

Globální oteplování?

70 Intergovernmental Panel on Climate Change IPCC TAR Third Assessment Report

71 Intergovernmental Panel on Climate Change IPCC TAR Third Assessment Report Mitigation

72 Skleníkový efekt? TEPLOTA SE MĚNÍ

73 Geografické rozložení teplotních změn

Skleníkových plynů přibývá

75 Nezávislý údaj: nárůst atmosférických koncentrací

76 Nezávislý údaj: nárůst atmosférických koncentrací NEPŘÍJEMNÁ SHODA

77 Novinové články posledních týdnů

78 Novinové články posledních týdnů

79 Novinové články posledních týdnů Zatím jen

80 Nové údaje o růstu teploty+modelové výpočty

81

82 Vývoj koncentrace skleníkových plynů: CO 2

83 Vývoj koncentrace skleníkových plynů: CH 4

84 Vývoj koncentrace skleníkových plynů: N 2 O

85

86 Pesimistický výhled do budoucnosti

87

Skleníkový efekt

89 Atmosféra Země skleníkové plyny v tloušťce čáry

90 Sovislost se skleníkovým efektem: novinářský pohled

91 Albedo Země z Vesmíru je asi 30%

92 Podrobnosti tepelné rovnováhy Země

93 Podrobnosti tepelné rovnováhy Země

94 Okna průhlednosti v zemské atmosféře: podle příručky

95 Okna průhlednosti v zemské atmosféře: podle příručky

96 Souvislost se skleníkovým efektem

97 Souvislost se skleníkovým efektem VISIBLE

98 Souvislost se skleníkovým efektem 6000 K288 K

99 Skleníkových plynů je bezpočet Carbon dioxide CO 2 ppm Global Warming Potential

100 Účinek freonu C 2 F 6 wave number cm -1 záleží na teplotě povrchu Země

101 Účinek freonu C 2 F 6 wave number cm -1 záleží na teplotě povrchu Země 288 K  15 o C 212 K  - 51 o C

102 Souhrn jednotlivých příspěvků k zářivé rovnováze

103 Souhrn jednotlivých příspěvků k zářivé rovnováze

104 Souhrn jednotlivých příspěvků k zářivé rovnováze

The end