Tematický workshop pro studenty SPŠ stavební v Opavě

Slides:



Advertisements
Podobné prezentace
Hrátky s elektřinou Vypracovala: Anna Doležalová Datum:
Advertisements

Princip a popis jaderných reaktoru
ELEKTRÁRNY.
Výroba a distribuce elektrické energie
Rozvodná elektrická síť
ELEKTRÁRNY Denisa Gabrišková 8.A.
Energetika.
2 Výroba elektrické energie
Jaderný reaktor a jaderná elektrárna
Jaderný reaktor Aktivní zóna – část reaktoru, kde probíhá řetězová reakce. Jako palivo slouží tyče s uranovými tabletami Moderátor – slouží jako tzv. zpomalovač.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Výroba elektrické energie - obecná část
Jaderná energie.
Výroba a rozvod elektrické energie
Jaké jsou technické prostředky ke snižování vlivu dopravy na životní prostředí - Jaká auta budeme používat? Patrik Macháček ZŠ Vítězná, Litovel 1250.
Výroba elektrické energie - obecná část
JADERNÁ ELEKTRÁRNA.
Tepelný akumulátor.
Popis a funkce elektrárny
Jedna ze dvou jaderných elektráren v ČR - Temelín
Elektrárny.
Jaderné elektrárny.
Jaderné reakce.
Vodní Elektrárna.
Elektrárny v ČR.
Tepelné motory.
Elektrická energie V současnosti nejvíce strojů a nástrojů pohání elektrická energie. Získává se přeměnou jiného druhu energie. Základem pro její výrobu.
ZŠ Rajhrad Ing. Radek Pavela
JADERNÁ ELEKTRÁRNA.
Energetika.
Uhlí Výroba paliv a energie.
Škola: Chomutovské soukromé gymnázium Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Moderní škola Název materiálu:VY_32_INOVACE_FYZIKA1_10 Tematická.
Společenské a hospodářské prostředí
Atomová elektrárna.
Digitální učební materiál
Jaderné Elektrárny.
Jedna ze dvou jaderných elektráren v ČR - Temelín
RF 1.1. Klasifikace jaderných reaktorů Podle základního jaderného procesu, který probíhá v jaderném zařízení, lze jaderné reaktory rozdělit na dvě základní.
Tepelná elektrárna.
Název školyStřední odborná škola a Gymnázium Staré Město Číslo projektuCZ.1.07/1.5.00/ AutorIng. Ivana Brhelová Název šablonyIII/2.
ŠTĚPENÍ JADER URANU anebo O jaderném reaktoru PaedDr. Jozef Beňuška
Výroba elektrické energie
Využití energie Slunce
Jak se trvale získává jaderná energie
Výroba elektrické energie - obecná část
Výroba elektřiny VY_30_INOVACE_ELE_733
Výroba elektrické energie Vzrůstající spotřeba energie klade nároky nejen na zvyšování efektivity její výroby, ale také na hledání stále nových zdrojů.
Jaderná elektrárna.
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Výroba a přenos elektrické energie Číslo DUM: III/2/FY/2/2/17 Vzdělávací předmět: Fyzika Tematická oblast:
Výroba a přenos elektrické energie. Struktura prezentace otázky na úvod výklad příklad/praktická aplikace otázky k zopakování shrnutí.
Nevyčerpatelné energetické zdroje Zbožíznalství 1. ročník.
Jaderné reaktory Pavel Tvrdík, Oktáva Jaderný reaktor Jaderný reaktor je zařízení, ve kterém probíhá řetězová jaderná reakce, kterou lze kontrolovat.
Elektrárny VY_32_INOVACE_2A_17 Číslo projektu: CZ.1.07/1.4.00/ Sada 1 Člověk a příroda MŠ, ZŠ a PrŠ Trhové Sviny.
Elektrárny Zbožíznalství 1. ročník Elektrárny - rozeznáváme: 1. tepelné elektrárny 2. vodní elektrárny 3. jaderné elektrárny.
Název školy: Základní škola Městec Králové Autor: Mgr.Jiří Macháček Název: VY_32_INOVACE_35_F9 Číslo projektu: CZ.1.07/1.4.00/ Téma: Jaderná elektrárna.
1 JE – jaderne elektrarny JE – Jaderné elektrárny 2 1 DDZ, rozdělení elektráren, Princip výroby elektřiny, 2 Objev elektronu, Historie JE.
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: NÁZEV: VY_32_INOVACE_192_Elektřina-výroba a rozvod AUTOR: Ing. Gavlas Miroslav.
Název projektu:ZŠ Háj ve Slezsku – Modernizujeme školu Číslo projektu:CZ.1.07/1.4.00/ Oblast podpory: Zlepšení podmínek pro vzdělávání na základních.
Název školy:Gymnázium, Roudnice nad Labem, Havlíčkova 175, příspěvková organizace Název projektu:Moderní škola Registrační číslo projektu:CZ.1.07/1.5.00/
Jaderné reakce Při jaderných reakcích se mohou přeměňovat jádra jednoho nuklidu na jádra jiných nuklidů. Přitom zůstává elektrický náboj i počet nukleonů.
Výukový materiál Škola: Střední průmyslová škola elektrotechnická a informačních technologií Brno Autor: Zbyněk Lecián Číslo projektu: CZ.1.07/1.5.00/
Název projektu: ZŠ Háj ve Slezsku – Modernizujeme školu
VY_32_INOVACE_08_Člověk a energie
Elektřina VY_32_INOVACE_05-36 Ročník: IX. r. Vzdělávací oblast:
Druhy elektráren Výroba a přenos elektrické energie Název školy
NÁZEV PROJEKTU: INVESTICE DO VZDĚLÁNÍ NESOU NEJVYŠŠÍ ÚROK
NÁZEV ŠKOLY: ZÁKLADNÍ ŠKOLA TIŠICE, okres MĚLNÍK AUTOR:
Výroba elektrické energie - obecná část
Transkript prezentace:

Tematický workshop pro studenty SPŠ stavební v Opavě Výroba elektrické energie Petr Krejčí 21. 12. 2010, VŠB-TUO

Základní elektroenergetické pojmy Elektrizační soustava - Soubor zařízení pro výrobu, přenos a spotřebu elektrické energie. Může být provozována samostatně nebo jako část propojené elektrizační soustavy. Elektrická síť - Souhrn vedení a stanic téhož napětí galvanicky propojených, sloužících pro přenos a rozvod elektrické energie. Nadřazená síť - Část elektrizační soustavy, která má z hlediska provozu větší důležitost než ostatní části, které napájí a jsou zpravidla nižšího napětí. Přenosová síť - Část elektrizační soustavy, tvořící přenosovou cestu pro napájení velkých stanic nebo uzlů. Rozvodná (distribuční) síť - Část elektrizační soustavy sloužící pro dodávku el. energie odběratelům.

Pološpičkové zatížení Spotřeba ČR - 16.4.2003 - pětiminutové hodnoty, max: 8395 MW (620), min: 6992 MW (300) Špičkové zatížení Pološpičkové zatížení Základní zatížení

Výroba elektrické energie V tzv. klasických tepelných elektrárnách se v kotli ohřívá voda, přeměňuje se v páru a ta uvádí do pohybu turbínu. Turína pohání alternátor, který vyrábí elektrickou energii, jež je odváděna vedeními vysokého napětí. Teplo se v tepelných elektrárnách vytváří v kotli spalováním fosilního paliva (tuhým palivem bývá černé a hnědé uhlí, kapalným palivem je ropa, oleje, mazut, plynným palivem je zemní plyn) nebo štěpením atomů. Jaderné elektrárny jsou také tepelnými elektrárnami a od elektráren na fosilní paliva se liší tím, že mají místo parního kotle reaktor, v němž v jaderném palivu probíhá řízená řetězová štěpná reakce. Jaderným palivem bývá přírodní uran, uran obohacený izotopem U235 nebo plutonium.

Výroba elektrické energie Vodní elektrárny pohání voda z řek, příliv a odliv moře nebo energie mořských vln. Vodní turbíny lze spustit během několika minut. Vodní energii, která je okamžitě k dispozici, lze proto jednoduše využít při náhlém zvýšení poptávky po elektrické energii. Vodní elektrárny nejsou tak složité jako elektrárny tepelné. Nepotřebují kotelnu a mají jednodušší turbíny. Lze je ovládat i dálkově a k obsluze stačí méně zaměstnanců. Vhodně doplňují tepelné elektrárny v elektrizační soustavě. Nevýhodou je, že nemohou stát všude, pouze tam, kde je dostatečný spád vody nebo kde je možné v nádrži naakumulovat dostatečné množství vody. Přílivové a příbojové elektrárny, nebo dokonce elektrárny využívající mořského vlnění lze stavět jen na příhodných místech.  Ve světě pracují i sluneční a větrné elektrárny, ale zatím jen v zanedbatelném množství, protože sluneční a větrnou energii ještě nedokážeme dostatečně účelně využít. Sluneční a větrné elektrárny k výrobě určitého množství energie potřebují nesrovnatelně více prostoru než klasické elektrárny. Na některých vhodných místech se stavějí geotermální elektrárny, které využívají tepla z nitra Země.

Schéma spalovací tepelné elektrárny

Kondenzační elektrárna 10 - 15 kV kondenzační turbosoustrojí 550 °C ~ kotel oběhové čerpadlo přehřívák páry kondenzátor páry turbína potrubí spojka generátor 20 MPa

Teplárna blokový transformátor VN / 400 kV protitlaké turbosoustrojí ~ tepelný konzum tr, pr, ir odběr tepla

Jaderná elektrárna 1. Reaktor, 2. Parogenerátor, 3. Čerpadlo, 4. Turbína, 5. Generátor, 6. Kondenzátor, 7. Přívod a odvod chladící vody

Materiály Jaderné palivo uran (U235, U233, U238), plutonium (Pu239), thorium (Th239) - ve formě čistých kovů (kovová paliva) - ve formě oxidů (keramická paliva) Moderátory a reflektory (zpomalují a odráží neutrony) - těžká voda, grafit, berylium, polyfenyly Chladiva - plynná (vzduch, CO2, helium) - kapalná (roztavené soli – fluorid litný, fluorid berylnatý, fluorid zirkoničitý, tekuté kovy – sodík a jeho slitiny s hořčíkem, vizmut s olovem, rtuť) Absorbční materiály (pro řízení a ochrany) - materiály obsahující bór (borité oceli, kyselina boritá), hafnium, kadmium

Vodní elektrárny Kaplanova turbína (pro největší průtočná množství a nejmenší spády 2 - 80m)

Francisova turbína (pro střední průtočná množství a střední spády 17 - 400m)

Peltonova turbína (pro nejmenší průtočná množství a nejvyšší spády 400 - 1700m)

Přečerpávací elektrárny Elektrárny s umělou nebo smíšenou akumulací 4 strojové uspořádání (turbína, alternátor, čerpadlo, motor) 3 strojové uspořádání (alternátor pracuje i jako motor) 2 strojové uspořádání (reverzní turbína pracuje i jako čerpadlo)

Netradiční zdroje elektrické energie Odhadem bylo v roce 2004 vyrobeno 400 TWh „obnovitelné elektrické energie“, z čehož více než 70% pochází z vody.

Větrná energie ρ je hustota vzduchu (kg.m-3) A je povrch rotoru (m2) V je rychlost větru (m.s-1) Ce je elektrická účinnost (%)

Solární energie Aktivní – přeměňují sluneční záření na elektrickou energii Pasivní – přeměňují sluneční záření na teplo pomocí kolektoru Na Zem dopadá sluneční záření 1,8.1017 W Solární konstanta 1370 W.m-2 (energie dopadající na povrh atmosféry) Doba svitu 1600 - 2200 hodin

Kyslíko-vodíkový palivový článek

Děkuji za pozornost.