Príklady rovnomerného pohybu po kružnici

Slides:



Advertisements
Podobné prezentace
ROVNOMĚRNÝ POHYB PO KRUŽNICI dostředivé zrychlení.
Advertisements

ROVNOMĚRNÝ POHYB.
Rovnoměrný pohyb Přímočarý – velikost ani směr rychlosti se nemění
2.1-3 Pohyb hmotného bodu.
Hybnost, Těžiště, Moment sil, Moment hybnosti, Srážky
ROVNOMĚRNÝ POHYB PO KRUŽNICI
Pohyb rovnoměrný.
3. KINEMATIKA (hmotný bod, vztažná soustava, polohový vektor, trajektorie, rychlost, zrychlení, druhy pohybů těles, pohyby rovnoměrné a rovnoměrně proměnné,
 Označení materiálu:VY_32_INOVACE_STEIV_FYZIKA1_04  Název materiálu: Druhy sil  Tematická oblast:Fyzika 1.ročník  Anotace: Prezentace slouží k seznámení.
Výukový materiál zpracován v rámci projektu EU peníze školám
ZŠ, Týn nad Vltavou, Malá Strana
GRAVITAČNÍ POLE.
Digitální výukový materiál zpracovaný v rámci projektu „EU peníze školám“ Projekt:CZ.1.07/1.5.00/ „SŠHL Frýdlant.moderní školy“ Škola:Střední škola.
DRÁHA A RYCHLOST HMOTNÉHO BODU DRÁHA HMOTNÉHO BODU  Trajektorie pohybu je geometrická čára, kterou hmotný bod opisuje při pohybu.  Trajektorií.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu: VY_32_INOVACE_FYZ_25.
Rovnoměrný pohyb – test 1
Rychlost okamžitá rychlost hmotného bodu:
1. KINEMATIKA HMOTNÝCH BODŮ
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
DYNAMIKA HMOTNÉHO BODU DOSTŘEDIVÁ SÍLA Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento projekt je spolufinancován Evropským sociálním.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o Tato prezentace.
Rovnoměrný pohyb po kružnici 2
Číslo projektu: CZ.1.07/1.4.00/ Číslo smlouvy: 4250/21/7.1.4/2011 Číslo klíčové aktivity: EU OPVK 1.4 III/2 Název klíčové aktivity: Inovace a zkvalitnění.
Nerovnoměrný a rovnoměrný pohyb
Definice rovnoměrného pohybu tělesa:
Mechanika I. Rovnoměrný pohyb po kružnici VY_32_INOVACE_10-10.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_INOVACE_703.
VY_32_INOVACE_10-03 Mechanika I. Rovnoměrný pohyb.
Kmitavý pohyb
VY_32_INOVACE_11-11 Mechanika II. Gravitační pole – test.
VÝKON A PŘÍKON.
Škola Střední průmyslová škola Zlín
17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. – Frekvence, perioda
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_33_02 Název materiáluRovnoměrný.
Fyzika pro lékařské a přírodovědné obory Ing. Petr VáchaZS – Kinematika hmotného bodu.
Učíme efektívne a moderne – inovácia vyučovacieho procesu
PaedDr. Jozef Beňuška Definice rovnoměrného pohybu tělesa: Rovnoměrný pohyb koná těleso tehdy, když za libovolné, ale stejně velké.
Rovnoměrný pohyb po kružnici a otáčivý pohyb
PaedDr. Jozef Beňuška
Polární soustava souřadnic
PaedDr. Jozef Beňuška
Rovnoměrný pohyb po kružnici
PaedDr. Jozef Beňuška
SPŠ SE Liberec a VOŠ Mgr. Jaromír Osčádal
Nerovnoměrný pohyb.
Pre 8. ročník CABRI Geometria II.
Formy mechanickej energie...
PaedDr. Jozef Beňuška
ROVNOMERNÝ POHYB Lucia Binderová 1.G.
PaedDr. Jozef Beňuška
Prezentácia z fyziky Radka Hrnčiarová.
Vzájomná poloha kružnice a priamky 8.ročník
T.Zamborská L.Nedbalová 8.A
AKUSTIKA.
PaedDr. Jozef Beňuška
PaedDr. Jozef Beňuška
PaedDr. Jozef Beňuška
PaedDr. Jozef Beňuška
Seminár z fyziky.
Ing. Zlatica Molčanová Košice
PaedDr. Jozef Beňuška
VZÁJOMNÁ POLOHA PRIAMKY A KRUŽNICE
Hybnosť telesa a impulz sily
Rýchlosť rovnomerného pohybu
PaedDr. Jozef Beňuška
PaedDr. Jozef Beňuška
PaedDr. Jozef Beňuška
MECHANIKA.
Rovnoměrný pohyb po kružnici
Rovnoměrný pohyb po kružnici
Transkript prezentace:

Príklady rovnomerného pohybu po kružnici

Hmotný bod koná rovnomerný pohyb po kružnici S ak za rovnaké ľubovoľne zvolené časové úseky opíše rovnaké dlhé oblúky kružnice Ds, ktorým prislúchajú rovnako veľké uhly Dj.

S Veľkosť rýchlosti pri rovnomernom pohybe po kružnici je daná podielom veľkosti dráhy Ds a príslušnej doby Dt, za ktorú hmotný bod túto dráhu prešiel. Pri rovnomernom pohybe je veľkosť rýchlosti stála.

S Vektor rýchlosti pri rovnomernom pohybe po kružnici Vektor okamžitej rýchlosti v danom bode má smer do- tyčnice kružnicovej trajektórie (je kolmý na polomer).

S Vektor rýchlosti pri rovnomernom pohybe po kružnici Pri rovnomernom pohybe hmotného bodu po kružnici má okamžitá rýchlosť stálu veľkosť, ale mení sa jej smer.

S Periodický jav - jav, ktorý sa pravidelne opakuje. Guľočka po istom čase bude vždy na tom istom mieste a bude mať tú istú rýchlosť...

S Perióda pohybu (obežná doba) T - čas, za ktorý sa rovnomerný pohyb po kružnici opakuje. S Frekvencia - je prevrátená hodnota periódy. Určuje počet obehov po kružnici za jednu sekundu.

Heinrich Hertz (1857 - 1894), nemecký fyzik

S Veľkosť rýchlosti pri rovnomernom pohybe po kružnici Ak dráha Ds je rovná obvodu kružnice, potom príslušná doba, za ktorú hmotný bod túto dráhu prešiel je T.

S Uhlová rýchlosť pri rovnomernom pohybe po kružnici w - omega - je určená pomerom uhla a doby, za ktorú hmotný bod tento uhol opísal.

S Uhlová rýchlosť pri rovnomernom pohybe po kružnici Ak dráha Ds je rovná obvodu kružnice, potom príslušný uhol je 2p rad a hmotný bod tento uhol opísal za čas T.

S Súvislosť medzi rýchlosťou v pri rovnomernom pohybe po kružnici a uhlovou rýchlosťou w... S Rýchlosť pri pohybe hmotného bodu po kružnici vypo- čítame, ak vynásobíme uhlovú rýchlosť polomerom.

Zmena okamžitej rýchlosti pri rovnomernom pohybe po kružnici... S nastáva v dôsledku neustálej zmeny smeru vektora okamžitej rýchlosti.

Okamžité zrýchlenie S Podiel zmeny okamžitej rýchlosti Dv a zodpovedajú- cej doby Dt, za ktorú táto zmena nastala je...

Rovnomerný pohyb hmotného bodu po kružnici je pohyb so zrýchlením, pretože pri tomto pohybe nas- táva neustále zmena smeru vektora okamžitej rých- losti.

Smer vektora okamžitého zrýchlenia - je v každom okamihu rovnaký ako smer vektora zmeny okamžitej rýchlosti.

Vektor okamžitého zrýchlenia a rovnomerného po- hybu hmotného bodu po kružnici... S - má v každom okamihu smer do stredu trajektórie tvaru kružnice. Je to dostredivé zrýchlenie.

Veľkosť okamžitého zrýchlenia rovnomerného pohy- bu hmotného bodu po kružnici... S - je možné vyjadriť pomocou veličín rýchlosť, uhlo- vá rýchlosť, polomer, perióda, frekvencia...

Rýchlosť rovnomerného pohybu družice po kružnici Riešte úlohu: Rýchlosť rovnomerného pohybu družice po kružnici okolo Zeme je 7,46 km.s-1. Družica sa pohybuje vo výške 800 km nad povrchom Zeme (polomer Zeme je R=6400 km). Určte obežnú dobu družice okolo Zeme. t = 101 minút

Určte veľkosť dostredivého zrýchlenia stacionárnej Riešte úlohu: Určte veľkosť dostredivého zrýchlenia stacionárnej družice Zeme (družica, ktorá zostáva stále nad tým istým miestom Zeme a jej vzdialenosť od stredu Ze- me je 42180 km). a = 0,224 m.s-2

Hmotný bod koná rovnomerný pohyb po kružnici: Test Hmotný bod koná rovnomerný pohyb po kružnici: a) ak za rôzne ľubovoľne zvolené časové úseky opíše rovnaké dlhé oblúky kružnice Ds, ktorým prislúchajú rovnako veľké uhly Dj, b) ak za rovnaké ľubovoľne zvolené časové úseky opíše c) ak za rovnaké ľubovoľne zvolené časové úseky opíše rôzne dlhé oblúky kružnice Ds, ktorým prislúchajú 1

Pri rovnomernom pohybe hmotného bodu po kruž- nici: Test Pri rovnomernom pohybe hmotného bodu po kruž- nici: a) sa mení veľkosť a smer okamžitej rýchlosti, b) sa nemení veľkosť a smer okamžitej rýchlosti, c) sa mení veľkosť okamžitej rýchlosti a nemení jej smer, d) sa nemení veľkosť okamžitej rýchlosti a mení sa jej smer. 2

Smer vektora okamžitej rýchlosti pri rovnomernom Test Smer vektora okamžitej rýchlosti pri rovnomernom pohybe hmotného bodu po kružnici je v každom okamihu : a) v smere dotyčnice ku kružnicovej trajektórie, b) do stredu kružnicovej trajektórie pohybu, c) kolmý na vektor dostredivého zrýchlenia, d) v smere kružnicovej trajektórie pohybu. 3

Smer vektora okamžitého zrýchlenia pri rovnomer- Test Smer vektora okamžitého zrýchlenia pri rovnomer- nom pohybe hmotného bodu po kružnici je v kaž- dom okamihu : a) v smere dotyčnice ku kružnicovej trajektórie, b) do stredu kružnicovej trajektórie pohybu, c) kolmý na vektor okamžitej rýchlosti, d) v smere kružnicovej trajektórie pohybu. 4

Definičný vzťah veličiny uhlové zrýchlenie je: Test Definičný vzťah veličiny uhlové zrýchlenie je: 5