Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

X. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 2. KVĚTNA 2012 F4110 Kvantová fyzika atomárních soustav letní semestr 2011 - 2012.

Podobné prezentace


Prezentace na téma: "X. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 2. KVĚTNA 2012 F4110 Kvantová fyzika atomárních soustav letní semestr 2011 - 2012."— Transkript prezentace:

1 X. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 2. KVĚTNA 2012 F4110 Kvantová fyzika atomárních soustav letní semestr

2 Úvodem Exkurs do prostorové symetrie vibrací a využití teorie bodových grup a jejich representací Proč (a kdy) nemusíme kvantovat vibrační pohyb molekul? Jaké jsou podmínky, aby určitá vibrace byla IR aktivní? Jaký je vliv anharmonických oprav? Skleníkový efekt: přehled Skleníkový efekt: role skleníkových plynů

3 Minule …

4 4 Minule: Adiabatický Hamiltonián víceatomové molekuly Explicitní dynamika jader jako hmotných bodů. Elektrony jako nehmotný tmel stabilizující molekulu svým příspěvkem do potenciální energie U. Molekula může volně letět prostorem a rotovat jako celek. Kromě toho koná vnitřní pohyby – vibrace. DVĚ CESTY Globální pohyby jsou zabudovány od začátku tím, že potenciální energie je vyjádřena jako funkce relativních vzdáleností atomů To byl postup v případě dvou-atomové molekuly v F IV. Globální pohyby jsou pominuty, molekula je umístěna v prostoru. Minimum potenciální energie určuje rovnovážné polohy atomů, kolem nichž dochází k malým vibracím. Dodatečně je využito toho, že potenciální energie se nemění při infinitesimálních translacích a rotacích molekuly jako tuhého celku. Tak budeme nyní postupovat.

5 5 Minule: Harmonická aproximace Rovnovážné polohy atomů Výchylky Harmonická aproximace … Taylorův rozvoj potenciální energie do 2. řádu Pohybové rovnice Soustava vázaných diferenciálních rovnic. V harmonické aproximaci lineárních. Přepíšeme maticově.

6 6 Minule: Konfigurační prostor silové konstanty (tuhosti) Zavedeme konfigurační prostor dimense 3N Pohybové rovnice v maticovém tvaru Matice hmotností reálná symetrická positivně definitní diagonální Matice tuhostí reálná symetrická positivně semi-definitní má vlastní číslo 0

7 7 Porovnejme jeden lineární oscilátor maticový zápis vázaných oscilátorů Zobecněný problém vlastních vektorů Minule: Normální kmity sekulární rovnice NORMÁLNÍ KMIT ("mód") dynamická matice

8 8 Minule: Ortogonalita v zobecněném problému vlastních čísel vzpomínka aplikace na daný problém zpětná substituce dá zobecněné relace ortogonality

9 Čtyři otázky na cestě ke kvantové teorii vibrační spektroskopie molekul

10 10 Čtyři otázky 1.Jak systematicky využít symetrie polyatomických molekul k zjednodušení dynamického problému v harmonické aproximaci 2.Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky 3.Kdy lze kmity molekul pozorovat v infračervené spektroskopii 4.Jak se projeví (třeba i slabé) anharmonické opravy

11 11 Čtyři otázky 1.Jak systematicky využít symetrie polyatomických molekul k zjednodušení dynamického problému v harmonické aproximaci 2.Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky 3.Kdy lze kmity molekul pozorovat v infračervené spektroskopii 4.Jak se projeví (třeba i slabé) anharmonické opravy … A JAK TOTO VŠECHNO SOUVISÍ SE SKLENÍKOVÝM JEVEM

12 Využití symetrie při studiu vibrací molekul: molekula vody -- příští cvičení

13

14 Využití symetrie při studiu vibrací molekul: molekula CO 2 vs. N 2 O -- příští cvičení

15 Molekula CO 2 vs. N 2 O: srovnání podélných kmitů 15 CO 2 N2ON2O OOC u1u1 u3u3 u2u2 u1u1 u3u3 u2u2 u1u1 u3u3 u2u2 u1u1 u3u3 u2u2 ACB TĚŽIŠTĚ NEHYBNÉ

16 16 Čtyři otázky 1.Jak systematicky využít symetrie polyatomických molekul k zjednodušení dynamického problému v harmonické aproximaci 2.Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky a jak v kvantové oblasti 3.Kdy lze kmity molekul pozorovat v infračervené spektroskopii 4.Jak se projeví (třeba i slabé) anharmonické opravy … A JAK TOTO VŠECHNO SOUVISÍ SE SKLENÍKOVÝM JEVEM 

17 Klasický a kvantový přístup k molekulárním vibracím

18 18 Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky DVA ALTERNATIVNÍ POSTUPY Adiabatický Hamiltonián zapíšeme ve výchylkách (zatím klasicky) 1.KVANTOVÁNÍ adiabatického Hamiltoniánu pro systém o 3n stupních volnosti 2.oddělení globálních stupňů volnosti 3.pohybové rovnice pro vnitřní stupně volnosti a jejich formální řešení 4.HARMONICKÉ PŘIBLÍŽENÍ – molekula jako systém vázaných kvantových oscilátorů 5.jejich transformace na nezávislé oscilátory 6.započtení anharmonických oprav – interakce kvantových oscilátorů 1.HARMONICKÉ PŘIBLÍŽENÍ pro U rovnovážná konfigurace molekuly 2.vyhledání vlastních kmitů a jejich frekvencí... čistě klasicky 3.v harmonické aproximaci soubor 3n – 6(5) nezávislých kmitů 4.amplitudy kmitů jako Lagrangeovy zobecněné souřadnice nezávislých harmonických oscilátorů 5.KVANTOVÁNÍ těchto oscilátorů 6.započtení anharmonických oprav – interakce kvantových oscilátorů NAKONEC SE OBA POSTUPY SEJDOU

19 B06: Schrödingerovy vlny: stacionární (nečasová) SR 19 de Broglie dvě řešení … stoj. vlna dispersní zákon 1. řádu v t počáteční podm. kvantová kausalita lineární princip superposice vlastní funkce prostorová amplituda vlastní energie Volná částice: rovinná vlna tomu odpovídá Schrödingerova rovnice Částice ve vnějším poli: stacionární řešení nečasová Schrödingerova rovnice energiové hladinyorbitály

20 Kvantování lineárního oscilátoru 20 harmonická aproximace ekvidistantní hladiny

21 21 Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Střední hodnoty pozorovatelných splňují Ehrenfestovy teorémy (důsledek SR):

22 22 KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Střední hodnoty pozorovatelných splňují Ehrenfestovy teorémy (důsledek SR): Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky

23 23 KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky

24 24 KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Tato vlnová funkce 3n proměnných obsahuje úplnou informaci o systému, je však velmi nenázorná a také obtížná k manipulaci. Rozhodně se nepodobá představě o klasických kmitajících částicích. Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky

25 25 KVANTOVÝ POSTUP (důsledné zpracování problému) Adiabatický Hamiltonián zapíšeme ve výchylkách Hybnosti jsou kanonicky sdružené jak s polohami, tak s výchylkami. Provedeme kvantování Vlnová funkce má za argument vektor konfiguračního prostoru. Pro ni máme řešit Schrödingerovu rovnici: Tato vlnová funkce 3n proměnných obsahuje úplnou informaci o systému, je však velmi nenázorná a také obtížná k manipulaci. Rozhodně se nepodobá představě o klasických kmitajících částicích. V harmonické aproximaci je však oba pohledy možno těsně sblížit  Jak je možné studovat kmity atomárního systému pomocí kvantové mechaniky

26 26 Dva postupy vhodné pro harmonickou aproximaci "STANDARDNÍ POSTUP" Od úplné SR přejdeme k hledání stacionárních stavů z nečasové SR Pouze v harmonické aproximaci je možná separace proměnných (nebudeme provádět) nezávislé normální kmity SMĚREM KE "KLASICE" Počítáme střední hodnoty pozoro- vatelných v závislosti na čase. To odpovídá klasickému obrazu. Pro časovou změnu platí Ehrenfestův teorém Tyto vztahy mají podobu pohybových rovnic, které však zpravidla nejsou uzavřené. Harmonická aproximace je v tom výjimečná operátor časové změny

27 27 Dva postupy vhodné pro harmonickou aproximaci "STANDARDNÍ POSTUP" Od úplné SR přejdeme k hledání stacionárních stavů z nečasové SR Pouze v harmonické aproximaci je možná separace proměnných (nebudeme provádět) nezávislé normální kmity SMĚREM KE "KLASICE" Počítáme střední hodnoty pozoro- vatelných v závislosti na čase. To odpovídá klasickému obrazu. Pro časovou změnu platí Ehrenfestův teorém Tyto vztahy mají podobu pohybových rovnic, které však zpravidla nejsou uzavřené. Harmonická aproximace je v tom výjimečná operátor časové změny nezávislé amplitudy pravděpodobnosti se násobí energie nezávislých normálních kmitů se sčítají energie každého kmitu se kvantuje zvlášť

28 28 Dva postupy vhodné pro harmonickou aproximaci "STANDARDNÍ POSTUP" Od úplné SR přejdeme k hledání stacionárních stavů z nečasové SR Pouze v harmonické aproximaci je možná separace proměnných (nebudeme provádět) nezávislé normální kmity SMĚREM KE "KLASICE" Počítáme střední hodnoty pozoro- vatelných v závislosti na čase. To odpovídá klasickému obrazu. Pro časovou změnu platí Ehrenfestův teorém Tyto vztahy mají podobu pohybových rovnic, které však zpravidla nejsou uzavřené. Harmonická aproximace je v tom výjimečná operátor časové změny

29 29 "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Historicky byl harmonický oscilátor nejlepší kandidát pro kvantové vyšetřování, protože měl kvasiklasický charakter a dal se proto ochotně zpracovat již tzv. naivně kvantovými metodami. Podobně tomu je pro všechny Hamiltoniány nejvýše kvadratické v kanonických proměnných (volná částice, částice v homogenním elektrickém i magnetickém poli, harmonický oscilátor, parametricky modulovaný harmonický oscilátor apod.). Samozřejmě tím není kvantová mechanika zbytečná, již první anharmonické opravy vedou k rozdílným výsledkům. Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky

30 30 "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Navíc se oscilující klubka během času nerozplývají, jejich neurčitost zůstává konečná. Vezměme jeden oscilátor s amplitudou rozkmitu : Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky

31 31 "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Navíc se oscilující klubka během času nerozplývají, jejich neurčitost zůstává konečná. Vezměme jeden oscilátor s amplitudou rozkmitu : Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky  koherentní stavy

32 32 Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Tím je s hlediska kvantové fyziky plně podložen náš postup, kdy jsme řešili klasické pohybové rovnice pro vlastní kmity molekuly: kvantové rovnice jsou v harmonické aproximaci totožné a vedou ke stejnému výsledku. Podobně tomu je pro všechny Hamiltoniány nejvýše kvadratické v kanonických proměnných (volná částice, částice v homogenním elektrickém i magnetickém poli, harmonický oscilátor, parametricky modulovaný harmonický oscilátor apod.). Samozřejmě tím není kvantová mechanika zbytečná, již první anharmonické opravy vedou k rozdílným výsledkům.

33 33 Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Tím je s hlediska kvantové fyziky plně podložen náš postup, kdy jsme řešili klasické pohybové rovnice pro vlastní kmity molekuly: kvantové rovnice jsou v harmonické aproximaci totožné a vedou ke stejnému výsledku. Podobně tomu je pro všechny Hamiltoniány nejvýše kvadratické v kanonických proměnných (volná částice, částice v homogenním elektrickém i magnetickém poli, harmonický oscilátor, parametricky modulovaný harmonický oscilátor apod.).Kvantové opravy jsou ovšem nezbytné: již první anharmonické opravy vedou k rozdílným výsledkům.

34 34 Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Tím je s hlediska kvantové fyziky plně podložen náš postup, kdy jsme řešili klasické pohybové rovnice pro vlastní kmity molekuly: kvantové rovnice jsou v harmonické aproximaci totožné a vedou ke stejnému výsledku. Podobně tomu je pro všechny Hamiltoniány nejvýše kvadratické v kanonických proměnných (volná částice, částice v homogenním elektrickém i magnetickém poli, harmonický oscilátor, parametricky modulovaný harmonický oscilátor apod.).Kvantové opravy jsou ovšem nezbytné: již první anharmonické opravy vedou k rozdílným výsledkům. TOHO NYNÍ POUŽIJEME NA ABSORPCI SVĚTLA V DIPÓLOVÉM PŘIBLÍŽENÍ

35 35 "KVANTOVÉ HAMILTONOVY ROVNICE": v harmonické aproximaci tak dostáváme tedy střední hodnoty výchylek splňují klasické Newtonovy rovnice. Historicky byl harmonický oscilátor nejlepší kandidát pro kvantové vyšetřování, protože měl kvasiklasický charakter a dal se proto ochotně zpracovat již tzv. naivně kvantovými metodami. Podobně tomu je pro všechny Hamiltoniány nejvýše kvadratické v kanonických proměnných (volná částice, částice v homogenním elektrickém i magnetickém poli, harmonický oscilátor, parametricky modulovaný harmonický oscilátor apod.). Samozřejmě tím není kvantová mechanika zbytečná, již první anharmonické opravy vedou k rozdílným výsledkům. Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky

36 36 Čtyři otázky 1.Jak systematicky využít symetrie polyatomických molekul k zjednodušení dynamického problému v harmonické aproximaci 2.Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky a jak v kvantové oblasti 3.Kdy lze kmity molekul pozorovat v infračervené spektroskopii 4.Jak se projeví (třeba i slabé) anharmonické opravy … A JAK TOTO VŠECHNO SOUVISÍ SE SKLENÍKOVÝM JEVEM  

37 Infračervená absorpce molekulárními kmity v popisu klasické fysiky

38 38 tlumení fenomenologicky přidáno Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace světelná vlna homogenní pole klasická pohybová rovnice efektivní náboj

39 39 tlumení fenomenologicky přidáno od elektrického dipólu molekuly přesněji: jeho části lineárně závislé na výchylce, zde tedy kde q je efektivní náboj (takto vlastně definovaný) Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace světelná vlna homogenní pole efektivní náboj klasická pohybová rovnice

40 40 tlumení fenomenologicky přidáno Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace světelná vlna homogenní pole efektivní náboj ustálené řešení klasická pohybová rovnice

41 41 tlumení fenomenologicky přidáno Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace světelná vlna homogenní pole efektivní náboj ustálené řešení klasická pohybová rovnice

42 42 tlumení fenomenologicky přidáno  w 00 Infračervená absorpce: dvouatomová molekula oscilátor... a ~ nm << (IR) ~  m dipólová aproximace absorbovaný výkon světelná vlna homogenní pole efektivní náboj ustálené řešení klasická pohybová rovnice

43 43 Infračervená absorpce víceatomovými molekulami Systematicky: Hamiltonián doplníme o dipólovou interakci I zde platí klasické pohybové rovnice pro střední výchylky, očekáváme tedy resonance u charakteristických frekvencí normálních kmitů podmínka nenulových polarisovatelností (permanentní dipól nepomůže) záleží na polarisaci (směru) elektrického vektoru

44 44 Infračervená absorpce víceatomovými molekulami I zde platí klasické pohybové rovnice pro střední výchylky, očekáváme tedy resonance u charakteristických frekvencí normálních kmitů podmínka nenulových polarisovatelností (permanentní dipól nepomůže záleží na polarisaci (směru) elektrického vektoru CO 2 rozdílné efektivní náboje symetrický kmit … nevyvolá dipólovou polarisaci dipólový moment se váže na E y,z dipólový moment se váže na E x Systematicky: Hamiltonián doplníme o dipólovou interakci

45 Infračervená absorpce molekulárními kmity: kvantově

46 46 Infračervená absorpce víceatomovými molekulami kvantově Resonanční přechody v kvantové mluvě... mezi stacionárními stavy EfEf EiEi

47 47 Infračervená absorpce víceatomovými molekulami kvantově EfEf EiEi Resonanční přechody v kvantové mluvě... mezi stacionárními stavy

48 48 Infračervená absorpce víceatomovými molekulami kvantově EfEf EiEi Bohrova podmínka: Resonanční přechody v kvantové mluvě... mezi stacionárními stavy

49 49 Infračervená absorpce víceatomovými molekulami kvantově EfEf EiEi Bohrova podmínka: absorpce fotonu + „kvantový přeskok“ Resonanční přechody v kvantové mluvě... mezi stacionárními stavy

50 50 Infračervená absorpce víceatomovými molekulami kvantově EfEf EiEi Bohrova podmínka: absorpce fotonu + „kvantový přeskok“ Intensita absorpce (pravděpodobnost přechodu) Fermiho zlaté pravidlo (naučíme se bez odvození) Resonanční přechody v kvantové mluvě... mezi stacionárními stavy

51 51 Infračervená absorpce víceatomovými molekulami kvantově EfEf EiEi Bohrova podmínka: absorpce fotonu + „kvantový přeskok“ Intensita absorpce (pravděpodobnost přechodu) Fermiho zlaté pravidlo dovolený přechod zakázaný přechod výběrová pravidla Resonanční přechody v kvantové mluvě... mezi stacionárními stavy úměrno intensitě vnějšího pole maticový element přechodu

52 52 Infračervená absorpce víceatomovými molekulami kvantově EfEf EiEi Bohrova podmínka: absorpce fotonu + „kvantový přeskok“ Intensita absorpce (pravděpodobnost přechodu) Fermiho zlaté pravidlo dovolený přechod zakázaný přechod výběrová pravidla Resonanční přechody v kvantové mluvě... mezi stacionárními stavy úměrno intensitě vnějšího pole maticový element přechodu elektrický dipólový moment jako v klasickém popisu: dipólové optické přechody

53 53 Infračervená absorpce víceatomovými molekulami kvantově EfEf EiEi Bohrova podmínka: absorpce fotonu + „kvantový přeskok“ Intensita absorpce (pravděpodobnost přechodu) Fermiho zlaté pravidlo dovolený přechod zakázaný přechod výběrová pravidla Pro harmonický oscilátor přísné výběrové pravidlo: Proto a kvantová resonanční podmínka se shoduje s klasickou. Resonanční přechody v kvantové mluvě... mezi stacionárními stavy

54 54 Čtyři otázky 1.Jak systematicky využít symetrie polyatomických molekul k zjednodušení dynamického problému v harmonické aproximaci 2.Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky a jak v kvantové oblasti 3.Kdy lze kmity molekul pozorovat v infračervené spektroskopii 4.Jak se projeví (třeba i slabé) anharmonické opravy … A JAK TOTO VŠECHNO SOUVISÍ SE SKLENÍKOVÝM JEVEM   

55 Infračervená absorpce molekulárními kmity: anharmonické jevy

56 56 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické harmonická aproximace

57 57 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické harmonická aproximace ekvidistantní hladiny

58 58 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické kubická korekce asymetrie potenciálu

59 59 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické kvartická korekce zde „měknutí“ potenciálu při vyšších energiích

60 60 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické anharmonický potenciál spojuje obě hlavní anharmonické opravy

61 61 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické ekvidistantní hladiny harmonického potenciálu

62 62 Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) Anharmonické efekty vyšší harmonické ekvidistantní hladiny harmonického potenciálu  postupně se odchylující hladiny anharmonického potenciálu

63 63 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické

64 64 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické

65 65 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické

66 66 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické Výběrové pravidlo je oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence.

67 67 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Pro slabé anharmonicity lze použít tzv. poruchového rozvoje. I bez počítání je pochopitelné, že výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace (psáno v basi normálních kmitů) vyšší harmonické Výběrové pravidlo je oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence.

68 68 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace víceatomové molekuly vyšší harmonické nezávislé normální kmity anharmonická vazba mezi normálními kmity

69 69 Anharmonické efekty Anharmonický potenciál pro jedinou oscilaci vede ke změně spektra vlastních energií i vlastních funkcí. Poruchový rozvoj: Pro slabé anharmonicity výsledek bude zhruba kde jenom je řádu 1, ostatní koeficienty jsou malé,. Výběrové pravidlo je nyní oslabeno: Přechody jsou tak možné na dvojnásobek, trojnásobek, … základní frekvence. Anharmonický potenciál pro vázané oscilace víceatomové molekuly vyšší harmonické nezávislé normální kmity anharmonická vazba mezi normálními kmity vyšší harmonické + kombinační frekvence

70 70 Čtyři otázky 1.Jak systematicky využít symetrie polyatomických molekul k zjednodušení dynamického problému v harmonické aproximaci 2.Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky a jak v kvantové oblasti 3.Kdy lze kmity molekul pozorovat v infračervené spektroskopii 4.Jak se projeví (třeba i slabé) anharmonické opravy … A JAK TOTO VŠECHNO SOUVISÍ SE SKLENÍKOVÝM JEVEM    

71 71 Čtyři otázky 1.Jak systematicky využít symetrie polyatomických molekul k zjednodušení dynamického problému v harmonické aproximaci 2.Jak je možné studovat kmity atomárního systému pomocí klasické mechaniky a jak v kvantové oblasti 3.Kdy lze kmity molekul pozorovat v infračervené spektroskopii 4.Jak se projeví (třeba i slabé) anharmonické opravy … A JAK TOTO VŠECHNO SOUVISÍ SE SKLENÍKOVÝM JEVEM IR absorpce n ě kterými skleníkovými molekulami    

72 Oxid uhličitý

73 73 IR spektrum oxidu uhličitého CO 2 CO 2 symetrický kmit … nemá dipólový moment 1388 cm -1 dipólový moment se váže na E y,z 667 cm -1 dipólový moment se váže na E x 2349 cm -1

74 74 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1

75 75 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace TABULKA IR FREKVENCÍ

76 76 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

77 77 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

78 78 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

79 79 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

80 80 IR spektrum oxidu uhličitého CO 2 CO cm cm cm -1 TABULKA IR FREKVENCÍ MÓDYcm -1 kombinace zákl. frekv.  +  =3737  + 2x  x667=3683  2349základní frekvence  1388IR neaktivní  667dvojnásobná degenerace

81 81 Sumární absorpční spektrum oxidu uhličitého CO 2  +  3716  + 2x  3609  2349  1388  667

82 82 Sumární absorpční spektrum oxidu uhličitého CO 2  +  3716  + 2x  3609  2349  1388  667 široké čáry … rotačně vibrační pásy

83 Další IR aktivní molekuly ( jak uvidíme, skleníkové)

84 84 Zábavný přehled vibrací a IR spekter pro skleníkové molekuly

85 Skleníkový efekt

86 Energetická bilance Země

87 87 Slunce a Země: energetická bilance Země jako isolovaná soustava

88 88 Slunce a Země: energetická bilance malá Země jako isolovaná soustava

89 89 Skleníkový efekt: základní schematický pohled

90 90 Skleníkový efekt: základní schematický pohled

91 91 Albedo Země z Vesmíru je asi 30% Oceány Zemědělská půda Lesy Pouště Oblaka Sníh, led Celek

92 92 Skleníkový efekt: základní schematický pohled

93 93 Skleníkový efekt: odhady solární konstanta 1368 Wm -2 albedo 0,3

94 94 Skleníkový efekt: odhady emisivita atmosféry ? solární konstanta 1368 Wm -2 albedo 0,3

95 95 Skleníkový efekt: odhady emisivita atmosféry ? solární konstanta 1368 Wm -2 albedo 0,3

96 96 Skleníkový efekt: odhady emisivita atmosféry ? solární konstanta 1368 Wm -2 albedo 0,3

97 97 Podrobnosti tepelné rovnováhy Země

98 98 Podrobnosti tepelné rovnováhy Země

99 99 Podrobnosti tepelné rovnováhy Země

100 100 Podrobnosti tepelné rovnováhy Země IN atmosférické okno

101 101 Podrobnosti tepelné rovnováhy Země IN atmosférické okno nezářivý přenos

102 102 Podrobnosti tepelné rovnováhy Země IN atmosférické okno nezářivý přenos OUT tepelné záření

103 103 Podrobnosti tepelné rovnováhy Země 342 =

104 104 Podrobnosti tepelné rovnováhy Země 342 = = 492 =

105 105 Podrobnosti tepelné rovnováhy Země 342 = = 492 = = 519 =

106 106 Podrobnosti tepelné rovnováhy Země TEPELNÁ ROVNOVÁHA ZEMĚ  dynamický proces s jemnou rovnováhou  závisí na mnoha faktorech  rozsah oblačnosti  množství aerosolů v atmosféře (sopky)  variace solární konstanty  koncentrace skleníkových plynů  uvedený model je stále jen schematický  cirkadiánní změny  sezonní změny  geografické vlivy: moře vs. kontinent atd.

107 Mechanismus skleníkového efektu: IR aktivní molekuly v atmosféře

108 108 Atmosféra Země dusík, kyslík a argon nejsou IR aktivní

109 109 Atmosféra Země dusík, kyslík a argon nejsou IR aktivní skleníkové plyny v tloušťce čáry

110 110 Které jsou skleníkové molekuly? SKLENÍKOVÉ MOLEKULY tvoří součást zemské atmosféry (zpravidla troposféry) jsou IR aktivní – absorbují infračervené záření nejdůležitější – vodní pára další ve stopových, ale účinných množstvích CO 2 N 2 O CH 4 freony přízemní ozon O 3

111 111 Okna průhlednosti v zemské atmosféře: podle příručky

112 112 Okna průhlednosti v zemské atmosféře: podle příručky

113 113 Souvislost se skleníkovým efektem 1  m = Å

114 114 Souvislost se skleníkovým efektem VISIBLE 1  m = Å

115 115 Souvislost se skleníkovým efektem 6000 K288 K 1  m = Å VISIBLE

116 116 Souvislost se skleníkovým efektem 6000 K288 K 1  m = Å VISIBLE atmosférické okno atmosférické okno

117 117 Skleníkový efekt jako čtyřstupňový proces SKLENÍKOVÝ EFEKT 1. stupeň Sluneční záření prochází viditelným oknem a ohřívá Zemi 2. stupeň Země vyzařuje do prostoru tepelné záření, hlavně v IR oboru 3. stupeň Toto záření je v troposféře pohlcováno skleníkovými plyny 4. stupeň Část pohlceného záření je zpětně vyzářena k Zemi a zlepšuje její tepelnou bilanci

118 118 Skleníkový efekt jako čtyřstupňový proces SKLENÍKOVÝ EFEKT 1. stupeň Sluneční záření prochází viditelným oknem a ohřívá Zemi 2. stupeň Země vyzařuje do prostoru tepelné záření, hlavně v IR oboru 3. stupeň Toto záření je v troposféře pohlcováno skleníkovými plyny 4. stupeň Část pohlceného záření je zpětně vyzářena k Zemi a zlepšuje její tepelnou bilanci

119 119 Skleníkový efekt jako čtyřstupňový proces SKLENÍKOVÝ EFEKT 1. stupeň Sluneční záření prochází viditelným oknem a ohřívá Zemi 2. stupeň Země vyzařuje do prostoru tepelné záření, hlavně v IR oboru 3. stupeň Toto záření je v troposféře pohlcováno skleníkovými plyny 4. stupeň Část pohlceného záření je zpětně vyzářena k Zemi a zlepšuje její tepelnou bilanci

120 120 SKLENÍKOVÝ EFEKT 1. stupeň Sluneční záření prochází viditelným oknem a ohřívá Zemi 2. stupeň Země vyzařuje do prostoru tepelné záření, hlavně v IR oboru 3. stupeň Toto záření je v troposféře pohlcováno skleníkovými plyny 4. stupeň Část pohlceného záření je zpětně vyzářena k Zemi a zlepšuje její tepelnou bilanci atmosférické okno

121 121 SKLENÍKOVÝ EFEKT 1. stupeň Sluneční záření prochází viditelným oknem a ohřívá Zemi 2. stupeň Země vyzařuje do prostoru tepelné záření, hlavně v IR oboru 3. stupeň Toto záření je v troposféře pohlcováno skleníkovými plyny 4. stupeň Část pohlceného záření je zpětně vyzářena k Zemi a zlepšuje její tepelnou bilanci atmosférické okno

122 122 SKLENÍKOVÝ EFEKT 1. stupeň Sluneční záření prochází viditelným oknem a ohřívá Zemi 2. stupeň Země vyzařuje do prostoru tepelné záření, hlavně v IR oboru 3. stupeň Toto záření je v troposféře pohlcováno skleníkovými plyny 4. stupeň Část pohlceného záření je zpětně vyzářena k Zemi a zlepšuje její tepelnou bilanci

123 123 Detailní pohled: Účinek freonu C 2 F 6 wave number cm -1 záleží na teplotě povrchu Země 288 K  15 o C 212 K  - 51 o C

124 124 Detailní pohled: Účinek freonu C 2 F 6 wave number cm -1 záleží na teplotě povrchu Země 288 K  15 o C 212 K  - 51 o C ATMOSFÉRICKÉ OKNO Proto je účinnost freonů značná

125 125 Detailní pohled: Účinek freonu C 2 F 6 wave number cm -1 záleží na teplotě povrchu Země 288 K  15 o C 212 K  - 51 o C ATMOSFÉRICKÉ OKNO Proto je účinnost freonů značná Podobně i methan má v okně deštníkový kmit

126 126 Skleníkových plynů je bezpočet Carbon dioxide CO 2 ppm Global Warming Potential

127 Globální oteplování?

128 128 Intergovernmental Panel on Climate Change IPCC TAR Third Assessment Report

129 129 Intergovernmental Panel on Climate Change IPCC TAR Third Assessment Report Mitigation

130 130 Skleníkový efekt? TEPLOTA SE MĚNÍ

131 131 Geografické rozložení teplotních změn

132 Skleníkových plynů přibývá

133 133 Nezávislý údaj: nárůst atmosférických koncentrací

134 134 Nezávislý údaj: nárůst atmosférických koncentrací NEPŘÍJEMNÁ SHODA

135 135 Novinové články … a dál 2007

136 136 Novinové články … a dál 2007

137 137 Novinové články … a dál Zde jen 2007

138 138 Novinové články … a dál Zde jen Úplný text Zprávy IPCC na 2007

139 139 Nové údaje o růstu teploty+modelové výpočty

140 140

141 141 Vývoj koncentrace skleníkových plynů: CO 2

142 142 Vývoj koncentrace skleníkových plynů: CH 4

143 143 Vývoj koncentrace skleníkových plynů: N 2 O

144 144

145 145 Souhrn jednotlivých příspěvků k zářivé rovnováze

146 146 Souhrn jednotlivých příspěvků k zářivé rovnováze

147 147 Souhrn jednotlivých příspěvků k zářivé rovnováze

148 148 Pesimistický výhled do budoucnosti

149 149

150 150 Skeptické názory a kritika IPCC FROM WIKIPEDIA The global warming controversy is a dispute regarding the nature, cau- ses, and consequences of global warming. The disputed issues include the causes of increased global average air temperature, especially since the mid-20th century, whether this warming trend is unprecedented or within normal climatic variations, whether humankind has contributed significantly to it, and whether the increase is wholly or partially an artifact of poor measu- rements. Additional disputes concern estimates of climate sensitivity, predict- ions of additional warming, and what the consequences of global warming will be. The controversy is significantly more pronounced in the popular media than in the scientific literature, where there is a consensus that recent global warming is mostly attributable to human activity.

151 151 Skeptické názory a kritika IPCC FROM WIKIPEDIA The global warming controversy is a dispute regarding the nature, cau- ses, and consequences of global warming. The disputed issues include the causes of increased global average air temperature, especially since the mid-20th century, whether this warming trend is unprecedented or within normal climatic variations, whether humankind has contributed significantly to it, and whether the increase is wholly or partially an artifact of poor measu- rements. Additional disputes concern estimates of climate sensitivity, predict- ions of additional warming, and what the consequences of global warming will be. The controversy is significantly more pronounced in the popular media than in the scientific literature, where there is a consensus that recent global warming is mostly attributable to human activity.

152 The end


Stáhnout ppt "X. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 2. KVĚTNA 2012 F4110 Kvantová fyzika atomárních soustav letní semestr 2011 - 2012."

Podobné prezentace


Reklamy Google