Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

KVADRATICKÉ NEROVNICE VY_32_INOVACE_32-07. Příklad 1 Řešte nerovnici Řešení - 1. způsob: Upravíme nerovnici na součinový tvar: Součin dvou čísel je kladný,

Podobné prezentace


Prezentace na téma: "KVADRATICKÉ NEROVNICE VY_32_INOVACE_32-07. Příklad 1 Řešte nerovnici Řešení - 1. způsob: Upravíme nerovnici na součinový tvar: Součin dvou čísel je kladný,"— Transkript prezentace:

1 KVADRATICKÉ NEROVNICE VY_32_INOVACE_32-07

2 Příklad 1 Řešte nerovnici Řešení - 1. způsob: Upravíme nerovnici na součinový tvar: Součin dvou čísel je kladný, jestliže platí: nebo

3 Řešíme soustavy nerovnic -1 3

4 Řešení - 2. způsob: Převedeme nerovnici na rovnici a určíme její kořeny: Dva kořeny rozdělí definiční obor nerovnice na tři intervaly:

5 Dosazením čísla z příslušných intervalů určíme, jakou hodnotu v tomto intervalu nabývá kvadratický trojčlen - kladnou nebo zápornou Dosadíme č. -2Dosadíme č. 0 Dosadíme č. 4 5 > 0-3 < 05 > 0

6 Příklad 2 Řešte nerovnici Nerovnici upravíme na součinový tvar: -3 0,5 Dosadíme č > 0 Dosadíme č < 0 Dosadíme č.1 4 > 0

7 Příklad 3 Druhá mocnina dvojčlenu je vždy nezáporná 3

8 Příklad 4 Srovnejte řešení nerovnic: a) b)

9 Příklad 5 Řešte nerovnici Diskriminant příslušné kvadratické rovnice x 2 - 4x + 5 = 0 D < 0. Rovnice nemá v oboru reálných čísel řešení. Totéž nemusí platit pro nerovnici. Výraz x 2 - 4x + 5 nabývá v celém definičním oboru pouze kladné hodnoty. Ověříme to dosazením libovolného čísla z oboru reálných čísel.

10 ŘEŠENÍ NEROVNIC V PODÍLOVÉM TVARU Příklad

11 Příklad 7 Nerovnici upravíme na podílový tvar -2 7

12 Děkuji za pozornost. Autor DUM: Mgr. Sylva Divišová


Stáhnout ppt "KVADRATICKÉ NEROVNICE VY_32_INOVACE_32-07. Příklad 1 Řešte nerovnici Řešení - 1. způsob: Upravíme nerovnici na součinový tvar: Součin dvou čísel je kladný,"

Podobné prezentace


Reklamy Google