Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Systémy hromadné obsluhy Základní pojmy Zdroj požadavků: konečný, nekonečný Příchod požadavků do systému: pevný, náhodný, v dávkách Režim fronty: FIFO,

Podobné prezentace


Prezentace na téma: "Systémy hromadné obsluhy Základní pojmy Zdroj požadavků: konečný, nekonečný Příchod požadavků do systému: pevný, náhodný, v dávkách Režim fronty: FIFO,"— Transkript prezentace:

1 Systémy hromadné obsluhy Základní pojmy Zdroj požadavků: konečný, nekonečný Příchod požadavků do systému: pevný, náhodný, v dávkách Režim fronty: FIFO, LIFO, SIRO, PŘI Chování ve frontě: trpělivost, výběr fronty Počet a uspořádání kanálů obsluhy: homogenní, nehomogenní, paralelní, sériové, s 1 s více frontami Výstup z obsluhy: výstupní potok regulární,náhodný Kendallova klasifikace systémů hromadné obsluhy Elementární vstupní tok Poissonovo rozdělení počtu událostí za časový interval Exponenciální rozdělení intervalů mezi událostmi Markovské systémy v hromadné obsluze Rovnice ve stabilizovaném tvaru Základní charakteristiky systémů M/M/1 Nákladový problém – minimalizace celkových nákladů

2 Členění modelů HO Z hlediska výpočtu: Analytické simulační Z hlediska počtu linek rozlišujeme: Systémy s konečným počtem linek Systémy s nekonečným počtem linek Systémy s čekáním (tj. požadavek čeká na obsluhu a vytváří se fronta) Systémy se ztrátami (tj. požadavek systém ihned opouští bez obsluhy a fronty se nevytváří) Systémy smíšené

3 Základní charakteristiky modelů HO Zdroj požadavků Populace,struktura Příchod do systému Vstupní potok Režim fronty Chování ve frontě Trpělivost Počet a uspořádání kanálů obsluhy Doba obsluhy Výstup ze systému Výstupní potok Q…queue S…servis T…time L…length

4 Intenzita vstupu jednotek do systému Interval mezi vstupy po sobě následujících jednotekX 1,X 2, … Intenzita obsluhy Počet kanálů obsluhym Intenzita provozu systému HO Střední doba čekání ve frontěTQTQ Střední doba obsluhyTSTS Střední hodnota celkové doby v systému, tj. doba čekání plus doba obsluhy T Pravděpodobnost, že v systému není žádná jednotkaP0P0 Pravděpodobnost, že v systému je n jednotekpnpn Střední počet jednotek ve frontěLQLQ Střední počet jednotek v kanálech obsluhyLSLS Střední počet jednotek v systémuL

5 Kendallova klasifikace:A/B/C/D/E/F ATyp pravděpodobnostní ho rozdělení intervalů mezi vstupy požadavků do systému M – Poissonův proces vstupu, tj. exponenciální rozdělení intervalů mezi vstupy E k – Erlangovo rozdělení intervalů mezi vstupy požadavků D – pravidelné vstupy požadavků G – obecný případ, jakékoliv rozdělení BTyp pravděpodobnostní ho rozdělení doby trvání obsluhy M – exponenciální rozdělení doby trvání obsluhy E k – Erlangovo rozdělení doby trvání obsluhy D – konstantní doba obsluhy G – jakékoliv rozdělení trvání obsluhy CPočet paralelních obslužných linek m=1, 2,.. (celé kladné číslo) DKapacita systému hromadné obsluhy, tj. místa v obsluze a ve frontě EPočetnost zdroje požadavků FRežim frontyFIFO, LIFO, PRI, SIRO

6 MODEL M/M/1 S ČEKÁNÍM Vstupní tok požadavků je stacionární, beznásledný a ordinární Pravděpodobnost, že za časový interval délky t nastane právě k událostí, je: Pravděpodobnost žádného vstupu: Střední počet událostí za jednotku času je roven:

7 Markovský vstup Počet jednotek, které vstoupí do systému v intervalu t má Poissonovské rozdělení pravděpodobnosti s intenzitou λ Intervaly mezi vstupy po sobě následujících jednotek mají exponenciální rozdělení pravděpodobnosti Střední interval mezi vstupy: Pravděpodobnost, že nastane jeden a více vstupů:

8 Graf hustoty pravděpodobnosti exponenciální náhodné proměnné

9 Markovská obsluha Pravděpodobnost, že doba obsluhy T S bude větší než t 0 ( v intervalu nebude ukončena) vypočteme jako: pravděpodobnost, že obsluha požadavků bude ukončena v průběhu intervalu za podmínky, že obsluha již probíhá po dobu t 0 :

10 Odvození charakteristik pro M/M/1 E 0  E 0 Žádná jednotka nevstupuje. V systému není žádná jednotka a po uplynutí doby dt tam není opět žádná jednotka tj. žádná jednotka nevstoupí, s pravděpodobností 1 – λdt E 0  E 1 Jedna jednotka vstupuje. Stavu E1 lze z nulového stavu dosáhnout jedině tak, že do systému vstoupí jedna jednotka, s pravděpodobností λdt E 1  E 0 Jedna jednotka je obsloužena a žádná nevstupuje. Žádná jednotka nevstoupí a zároveň jedna bude během doby dt obsloužena. Oba případy musí nastat zároveň, tedy s pravděpodobností (1 – λdt) µdt = μdt – λµdt 2 ; E n  E n Jedna jednotka vstupuje a jedna je obsloužena neboli nenastane žádná změna. (a)žádná jednotka nevstoupí a žádná nebude obsloužena (b) nebo (b) jedna vstoupí a současně jedna bude obsloužena. (1 – λdt) (1 – μdt) + λ dt μdt = 1 –λ dt – μdt + λ μdt 2 = 1 –λ dt – μdt

11 Výchozí počet jednotek Změna stavu (1- λ) dt λ dt μ dt1-( λ + μ )dt λ dt 0 20 μ dt1-( λ + μ )dt λ dt μ dt1-( λ + μ )dt λ dt 000 μ dt1-( λ + μ )dt 0000 μ dt 0000

12 Výpočet limitních pravděpodobností Markovského řetězce p 0 (t +dt) = p 0 (t) (1 – λdt) + p 1 (t) μ dt p 1 (t +dt) = p 0 (t) λ dt + p1(t) (1 – λdt – μdt) + p 2 (t) μ dt p n (t +dt) = p n-1 λ(t) dt + p n (t) (1 – λdt – μdt) + p n+1 (t) μ dt

13 Úprava rovnic První rovnici upravíme: p 0 (t +dt) = p 0 (t) – p 0 (t) λ dt+ p 1 (t) μ dt p 0 (t +dt) – p 0 (t) = –p 0 (t) λ dt+ p 1 (t) μ dt obě strany rovnice vydělíme "dt" a přejdeme k limitě pro dt  0...

14 Rovnice pro stabilizovaný systém

15 Řešení soustavy rovnic ve stabilizovaném tvaru p 1 = ( λ / μ ) p 0 … p n = ( λ / μ ) n p 0 p 0 ( λ / μ )[1 + λ / μ + ( λ / μ ) 2 + … + ( λ / μ ) n + … ] = 1 – p 0 dosadit

16 [1 + λ / μ + (λ / μ)2 + … + (λ / μ)n + … ]Součet nekonečné geometrické řady,která konverguje, když Intenzita provozu Musí být menší než 1 (reálně do 0,8)

17

18 Intenzita provozu - příklad Lékař ošetřuje jednoho pacienta průměrně 20 minut. Za jednu hodinu přichází průměrně 5 pacientů. Bude tento systém fungovat?

19 Intenzita provozu - příklad Jak musí lékař zkrátit dobu ošetření,aby a)systém fungoval? b)Pracoval nejvýše 80 procent pracovní doby?

20 Výpočty základních charakteristik Pravděpodobnost, že jednotka nebude čekat ve frontě, tj., že systému není žádná jednotka Pravděpodobnost, že v systému je právě k jednotek Pravděpodobnost, že v systému je k nebo více jednotek Pravděpodobnost, že v systému je více než k jednotek Pravděpodobnost, že v systému je k nebo méně jednotek Střední počet jednotek v systému Střední počet jednotek ve frontě Střední doba strávená jednotkou v systému Střední doba strávená jednotkou ve frontě Střední doba obsluhy

21 Příklad Do obchodu vstupuje průměrně 20 zákazníků za hodinu. Obsluha jednoho zákazníka trvá přibližně 2 minuty. a)Jaká bude průměrná délka fronty? b)Jakou dobu průměrně zákazník v obchodě stráví?

22 Nákladový problém Náklady vzniklé pobytem jednotky v systému za jednotku času N1N1 Náklady na provoz jednoho kanálu obsluhy za jednotku času N2N2 Průměrný počet jednotek v systému L Počet kanálů obsluhym Celkové náklady na provoz i pobyt jednotek v systému za jednotku času N.

23 Nákladový problém – lékař pracuje na 80 % Mzda lékaře je 500 Kč na hodinu. Náklady na pobyt pacienta ve zdravotnickém zařízení se odhadují na a) 50 Kč na hodinu b) 300 Kč na hodinu Vyplatí se, aby byly v provozu 2 ordinace zároveň?.


Stáhnout ppt "Systémy hromadné obsluhy Základní pojmy Zdroj požadavků: konečný, nekonečný Příchod požadavků do systému: pevný, náhodný, v dávkách Režim fronty: FIFO,"

Podobné prezentace


Reklamy Google