Metodické pokyny Materiál je určen pro 4. ročník 6letého a 2. ročník 4letého studia. Výklad slouží k odvození vět, které platí pro pravoúhlý trojúhelník.

Slides:



Advertisements
Podobné prezentace
Pythagorova věta a její odvození
Advertisements

POZNÁMKY ve formátu PDF
Pythagoras 6.století př. n. l..
PYTHAGOROVA VĚTA Věta k ní obrácená.
Pythagorova věta Mgr. Dalibor Kudela
TRIGONOMETRIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: ,
Goniometrické funkce Řešení pravoúhlého trojúhelníku
EUKLIDOVY VĚTY A PYTHAGOROVA VĚTA
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G
EUKLEIDÉS.
NÁZEV ŠKOLY: Základní škola Nový Jičín, Komenského 66, p. o
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: , ; fax:
Vytvořila: Pavla Monsportová 2.B
Matematika Vytvořila: Ing. Silva Foltýnová Pravoúhlý trojúhelník - opakování DUM číslo: 11 Pravoúhlý trojúhelník - opakování.
SZŠ a VOŠZ Zlín® předkládá prezentaci Kabinet MAT Mgr. Vladimír Pančocha.
Pythagorova věta – využití VY_32_INOVACE_38-1-2
Pythagorova věta užití v prostoru
Základní škola Ostrava – Hrabová Microsoft Office PowerPoint 2003
14_Řešení pravoúhlého trojúhelníka – Euklidovy věty
PRAVOÚHLÝ TROJÚHELNÍK
VY_42_INOVACE_109_PYTHAGOROVA VĚTA Jméno autora VMM. Lačná Datum vytvoření VMříjen 2011 Ročník použití VM8. ročník Vzdělávací oblast/obormatematika Anotace.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:8. ročník – Matematika a její aplikace – Matematika – Pythagorova věta autor.
Pythagorova věta Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Pythagorova věta.
Tento digit á ln í učebn í materi á l (DUM) vznikl na z á kladě ře š en í projektu OPVK, registračn í č í slo CZ.1.07/1.5.00/ s n á zvem „ Výuka.
Goniometrické funkce Kotangens ostrého úhlu
* Pythagorova věta Matematika – 8. ročník *
Pythagorova věta 8. ročník
Vypracovala: Pavla Monsportová 2.B
PYTHAGOROVA VĚTA PŘÍKLADY
Základní škola a mateřská škola T. G. Masaryka Milovice, Školská 112, Milovice projekt v rámci Operačního programu VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST.
PLANIMETRIE Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T.G. Masaryka, Kostelec nad Orlicí Autor: Mgr. Renata Čermáková.
Pythagorova věta – historie
Výuková sada – Matematika, DUM č.01
Pythagorova věta.
Opakování Víš, co je to druhá mocnina ? Je to součin dvou sobě rovných činitelů. a 2 = a.a.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
* Thaletova věta Matematika – 8. ročník *
Výukový materiál zpracován v rámci projektu EU peníze školám
Matematika Vytvořila: Ing. Silva Foltýnová Pravoúhlý trojúhelník DUM číslo: 09 Pravoúhlý trojúhelník Planimetrie – Pravoúhlý.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
PRAVOÚHLÝ TROJÚHELNÍK V ROVINNÝCH GEOMETRICKÝCH OBRAZCÍCH
Pythagorova věta Pythagoras 570 př.n.l. – 510 př.n.l.
Matematický rychlokvíz 2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Pravoúhlý trojúhelník (procvičování)
Pythagorova věta Mgr. Petra Toboříková Vyšší odborná škola zdravotnická a Střední zdravotnická škola, Hradec Králové, Komenského 234.
Pravoúhlý trojúhelník sekunda - osmileté studium Mgr. Štěpánka Baierlová Gymnázium Sušice Pythagorova věta.
Pythagorova VĚTA. PYTHAGORAS (6. století před naším letopočtem) Πυθαγορασ (Pí & ypsílon & théta & alfa & gamma & omíkron & ró & alfa & sígma)
PYTHAGOROVA VĚTA Pythagorova Pythagorova věta a věta k ní obrácená.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Číslo projektu:CZ.1.07/1.4.00/ Název DUM:TROJÚHELNÍK-PYTHAGOROVA.
PYTHAGORAS ŘECKÝ MATEMATIK PYTHAGORŮV ŽIVOT Pythagoras ze Samu, okolo 570 př. n. l. ostrov Samos – po 510 př. n. l. 570 př. n. l.Samos510 př. n. l. o.
PYTHAGORAS Šimon Úradník.
PYTHAGOROVA VĚTA Věta k ní obrácená
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha - východ
Název: VY_32_INOVACE_MA_8A_12I Škola:
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
Pythagorova věta 7. třída Lenka Betlachová.
Pythagorova věta – popisuje vztahy stran v pravoúhlém trojúhelníku
Pravoúhlý trojúhelník, Pythagorova věta, přepona, odvěsna
PYTHAGOROVA VĚTA Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín
Goniometrické funkce v pravoúhlém trojúhelníku
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost   
PYTHAGOROVA VĚTA Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: TROJÚHELNÍK-testy
Název projektu: Učíme obrazem Šablona: III/2
PYTHAGOROVA VĚTA Věta k ní obrácená
EUKLIDOVA VĚTA O VÝŠCE:
Pythagorova věta.
Transkript prezentace:

Metodické pokyny Materiál je určen pro 4. ročník 6letého a 2. ročník 4letého studia. Výklad slouží k odvození vět, které platí pro pravoúhlý trojúhelník. Inovace spočívá ve využití interaktivního prostředí. Výklad využívá podobnosti trojúhelníků. Před výkladem je třeba zopakovat věty o podobnosti trojúhelníků. Žák musí mít psací a rýsovací potřeby, barevné tužky.

Klíčová slova: odvěsny, přepona úseky na přeponě podobnost trojúhelníků obsah pravoúhelníků

Řešení pravoúhlého trojúhelníka Eukleidovy a Pythagorova věta

Názvy stran: AB … přepona trojúhelníka AC, BC …odvěsny trojúhelníka Velikosti stran: ǀABǀ = c ǀACǀ = b ǀBCǀ = a

CP … výška na přeponu AP … úsek na přeponě přilehlý k odvěsně b BP … úsek na přeponě přilehlý k odvěsně a v = ǀPVǀ C a = ǀBPǀ C b = ǀAPǀ

APC CPB (uu) = =

Eukleidova věta o výšce: v 2 = c a. C b V každém pravoúhlém trojúhelníku je druhá mocnina výšky k přeponě rovna součinu délek obou úseků na přeponě. Jinak: Obsah čtverce sestrojeného nad výškou pravoúhlého trojúhelníku je roven obsahu obdélníka sestrojeného z obou úseků na přeponě.

v 2 = c a. C b

ACB CPB ACB APC = = = =

Eukleidova věta o odvěsně: a 2 = c. C a b 2 = c. C b V každém pravoúhlém trojúhelníku je druhá mocnina délky odvěsny rovna součinu délek přepony a přilehlého úseku na přeponě. Jinak: Obsah čtverce sestrojeného nad odvěsnou pravoúhlého trojúhelníku je roven obsahu obdélníka sestrojeného z přepony a přilehlého úseku na přeponě.

a 2 = c. c a

b 2 = c. C b

Sečteme oba vztahy: a 2 = c. c a b 2 = c. C b a 2 + b 2 = c. c a + c. C b = c.(c a + C b ) = c 2 a 2 + b 2 = c 2

Pythagorova věta: a 2 + b 2 = c 2 V každém pravoúhlém trojúhelníku je druhá mocnina délky přepony rovna součtu druhých mocnina délek obou odvěsen. Jinak: Obsah čtverce sestrojeného nad přeponou pravoúhlého trojúhelníku je roven součtu obsahů čtverců nad oběma odvěsnami.

a 2 + b 2 = c 2

Věta obrácená k větě Pythagorově: Platí-li pro délky stran trojúhelníku ABC vztah a 2 + b 2 = c 2, pak je tento trojúhelník pravoúhlý a c je délka přepony.

Z historie:

Eukleidés též Euklides (asi 325 př. n. l. – 260 př. n. l.) byl řecký matematik a geometr. Eukleides - Wikipedie. [Online] [Citace: ]

O Eukleidově životě víme velmi málo. Narodil se v Řecku, většinu života strávil v Egyptě. Vedle základů geometrie se věnoval i teorii čísel, perspektivě, kuželosečkám. Hlavním jeho dílem jsou Základy, kde ve třinácti knihách, jež začínají stanovením deseti základních axiomů. Základy shrnují práci mnoha dřívějších matematiků a filosofů a jsou nejúspěšnější matematickou knihou všech dob, která se užívala víc než 2000 let!

Pythagoras ze Samu (6. století př. n. l.) byl řecký matematik a filosof. Pythagoras - Wikipedie. [Online] [Citace: ]

Starší kultury věděly, že trojúhelník, jehož strany jsou v poměru 3:4:5 je pravoúhlý a Číňané to dovedli i geometricky dokázat. Z díla Pythagora se nic nezachovalo. Věta pojmenována něho, byla známa i v jiných starověkých civilizacích dávno předtím (v Číně, částečně např. v Egyptě).

Citace zdroje: POMYKALOVÁ, Eva. Matematika pro gymnázia: Planimetrie. 1. vyd. Praha: Jednota českých matematiků a fyziků, 1993, 206 s. ISBN