Digitální učební materiál

Slides:



Advertisements
Podobné prezentace
Sluneční energie Co je solární energie Využití solární energie
Advertisements

Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Lokální počítačové sítě Téma:Ethernet IV. - Thin-Ethernet Ročník:4.
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Lokální počítačové sítě Téma:Ethernet V. - Thick-Ethernet Ročník:4.
Digitální učební materiál
Autor:Jiří Gregor Předmět/vzdělávací oblast: Digitální technika Tematická oblast:Digitální technika Téma:Paměti – dělení podle technologie 1 Ročník:3.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast: Fyzikální vzdělávání Tematická oblast:Mechanické kmitání Téma:Periodické pohyby, kmitavé pohyby.
Digitální učební materiál
Digitální učební materiál
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast: Fyzikální vzdělávání Tematická oblast:Mechanika Téma:Rychlost hmotného bodu Ročník:1. Datum vytvoření:srpen.
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Autor:Jiří Gregor Předmět/vzdělávací oblast: Digitální technika Tematická oblast:Digitální technika Téma:Paměti – dělení podle činnosti paměťové buňky.
Digitální učební materiál
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Fyzikální vzdělávání Tematická oblast:Mechanická práce Téma:Kinetická a potenciální energie Ročník:1.
Sluneční elektrárna.
Digitální učební materiál
Digitální učební materiál
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Datová komunikace Téma:OSI - spojová vrstva I. Ročník:4. Datum.
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Autor:Ing. Peter Podoba Předmět/vzdělávací oblast:Elektrotechnická zařízení Tematická oblast:Údržba elektrických zařízení Téma:PLC LOGO! Siemens - funkce.
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Autor:Ing. Jiří Šťastný Předmět/vzdělávací oblast:Fyzika Tematická oblast:Optika Téma:Fotoelektrický jev Ročník:4. Datum vytvoření:Únor 2014 Název:VY_32_INOVACE_ FYZ.
Digitální učební materiál
Digitální učební materiál
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Lokální počítačové sítě Téma:Hvězdicová síť Ročník:4. Datum vytvoření:září.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Lokální počítačové sítě Téma:Kruhová síť Ročník:4. Datum vytvoření:září.
Digitální učební materiál
Autor:Jiří Gregor Předmět/vzdělávací oblast: Digitální technika Tematická oblast:Digitální technika Téma:Paměti – úvod, základní pojmy Ročník:3. Datum.
Tereza Lukáčová 8.A MT blok
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Datová komunikace Téma:OSI - síťová vrstva I. Ročník:4. Datum vytvoření:srpen.
Autor:Jiří Gregor Předmět/vzdělávací oblast: Digitální technika Tematická oblast:Digitální technika Téma:Demultiplexery Ročník:2. Datum vytvoření:únor.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Datová komunikace Téma:OSI - prezentační vrstva, aplikační vrstva.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Datová komunikace Téma:OSI - transportní vrstva I. Ročník:4. Datum.
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Digitální učební materiál
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: MIROSLAV MAJCHER Název materiálu: VY_32_INOVACE_13_ZPŮSOBY.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Datová komunikace Téma:Základní přehled síťové architektury Ročník:4.
Autor:Ing. Jiří Šťastný Předmět/vzdělávací oblast:Fyzika Tematická oblast:Optika Téma:Optické čočky Ročník:4. Datum vytvoření:Prosinec 2013 Název:VY_32_INOVACE_ FYZ.
Digitální učební materiál
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast: Fyzikální vzdělávání Tematická oblast:Kinematika Téma:Posuvný a otáčivý pohyb Ročník:1. Datum.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast: Fyzikální vzdělávání Tematická oblast:Mechanické kmitání Téma:Periodické pohyby, kmitavé pohyby.
Autor:Ing. Jiří Šťastný Předmět/vzdělávací oblast:Fyzika Tematická oblast:Optika Téma:Lom světla - příklady Ročník:4. Datum vytvoření:Listopad 2013 Název:VY_32_INOVACE_ FYZ.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Lokální počítačové sítě Téma:Token - Ring I. Ročník:4. Datum vytvoření:září.
Digitální učební materiál
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast: Fyzikální vzdělávání Tematická oblast:Mechanika Téma:Tlak a tlaková síla v plynech Ročník:1. Datum.
Digitální učební materiál
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast: Fyzikální vzdělávání Tematická oblast:Mechanické kmitání Téma:Jednoduchý kmitavý pohyb Ročník:1.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast:Telekomunikace Tematická oblast:Lokální počítačové sítě Téma:Token - Ring II. - přístup na síť.
Zlepšení podmínek pro vzdělávání na středních školách Operačního programu Vzdělávání pro konkurenceschopnost Název a adresa školy: Integrovaná střední.
Elektronické učební materiály – II. stupeň Fyzika 9 Autor: Mgr. Zuzana Vimrová 1. Jakým způsobem lze získávat elektrickou energii?
Transkript prezentace:

Digitální učební materiál Autor: Ing. Pavel Horlivý Předmět/vzdělávací oblast: Elektrotechnický základ Tematická oblast: Elektromagnetická indukce Téma: Výroba elektrické energie Ročník: 3. – 4. Datum vytvoření: červen 2013 Název: VY_32_INOVACE_15.1.05. ELE Anotace: Aplikace fotovoltaického jevu, princip a využití jednoho zdroje energie – slunečního záření. Prezentace je určena pro výuku žáků oboru Telekomunikace. Využitím grafických možností sady Microsoft Office 2010 se materiál stává inovativním zejména přehledností výkladu odborného tématu. Využití multimediálních prostředků zvyšuje názornost výuky, usnadňuje porozumění tématu i u slabších žáků a žáků se SPU, udržuje jejich pozornost, podporuje jejich zájem a aktivitu. Metodický pokyn: Materiál je určen pro výuku, vyžaduje použití PC a dataprojektoru. Prezentace primárně slouží pro výklad v hodině, ale může být využita i k samostudiu a pro distanční formu vzdělávání. Materiál vyžaduje použití multimediálních prostředků – PC a dataprojektoru.

VÝROBA ELEKTRICKÉ ENERGIE SOLÁRNÍ ELEKTRÁRNY

Solární elektrárny Sluneční elektrárny využívají energii slunečního záření, kterou přeměňují na energii elektrickou.

Rozdělení podle využití přeměny sluneční energie Přímé Přeměna využívá fotovoltaického jevu. Je to jev, při kterém se v látce působením světla (fotonů) uvolňují elektrony. Tento důležitý jev může nastat v některých polovodičích.

Rozdělení podle využití přeměny sluneční energie Nepřímé Získání tepla pomocí slunečních sběračů. Soustředění slunečních paprsků do centra, kde dojde k ohřevu vody. Výroba elektrické energie probíhá v klasické parní turbíně.

Přímá sluneční elektrárna

Nepřímá sluneční elektrárna

Rozdělení solárních fotovoltaických panelů Křemíkový solární panel Je tvořen polovodičovými plátky tenčími než 1 mm. Na spodní straně je plošná průchozí elektroda. Horní elektroda má plošné uspořádání tvaru dlouhých prstů zasahujících do plochy. Tak může světlo na plochu svítit. Povrch je chráněn sklem s antireflexní vrstvou (napařením oxidu titanu), díky níž proniká do polovodiče více světla.

Rozdělení solárních fotovoltaických panelů Organický solární panel Technologie výroby sluneční energie za pomoci speciální techniky, pomocí fotosyntézy. Nová technologie používá geneticky zkonstruované bílkoviny, které využívají fotosyntézu k výrobě elektrické energie. Články by měly být levnější a větší má být i účinnost, která se má zvýšit z 12-14 % u křemíkových panelů až na 25 %. Nová technologie je umožněna díky poznatkům z genetického inženýrství a nanotechnologií.

Rozdělení solárních fotovoltaických panelů Fotovoltaické fólie Tenkovrstvé solární články se dají nanášet na poměrně velké plochy pomocí technologie, která je principiálně shodná s inkoustovou tiskárnou. Fotovoltaické fólie se dají tisknout v širokých a dlouhých pásech na ohebné podklady. Polovodičová vrstva je široká asi jen jeden mikrometr.

Fotovoltaický článek 1 cm2 dává proud o výkonu kolem 12 mW. 1 m2 slunečních článků tak může v letní poledne vyrobit stejnosměrný proud o výkonu až 150 W. Sluneční články se zapojují buď za sebou (sériově), abychom dosáhli potřebného napětí (na jednom článku je 0,5 V), nebo vedle sebe (paralelně), abychom získali větší proud. Spojení mnoha článků vedle sebe a za sebou se nazývá sluneční panel.

Princip fotovoltaického článku Fotovoltaický článek je nejčastěji tvořen tenkou destičkou nařezanou z monokrystalu křemíku, jehož výroba je sice pracná a nákladná, ale má stále nejvyšší dosahovanou účinnost (cca 35%). Použít lze i materiál polykrystalický, jeho účinnost je okolo 15%, ale jeho výroba je levnější Ještě levnější je amorfní materiál, jehož účinnost je sice jen kolem 8%, ale má velkou absorpční schopnost (postačí tenká vrstva na levném nosném materiálu).

Princip fotovoltaického článku Destička je z jedné strany obohacena atomy trojmocného prvku (např. bóru) a z druhé strany atomy pětimocného prvku (např. arzenu), mezi nimi vznikne přechod P-N. Když na destičku dopadnou fotony slunečního záření, vytvářejí z neutrálního atomu páry elektron-díra. Vnitřní elektrické pole náboje opačných znamének se rozdělí a vyvolá po uzavření elektrického obvodu stejnosměrný elektrický proud.

Otázky k tématu Jak se dělí solární elektrárny podle využití primárního zdroje? Jak dělíme solární fotovoltaické panely? Jaké je napětí jednoho fotovoltaického článku? Jaký výkon může vyrobit solární panel o ploše 1m2 v letním poledni? Co je to fotovoltaický jev? Jaký základní materiál se používá na výrobu P-N přechodu a čím se tento prvek obohacuje?

Použité zdroje: TKOTZ, Klaus. Příručka pro elektrotechnika. 2. vyd. Praha: Europa-Sobotáles, 2006, 623 s. ISBN 80-867-0613-3. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Pavel Horlivý. Obrázky: ZÁKUPÁK. Wikipedia.cz [online]. [cit. 20.6.2013]. Dostupný na WWW: http://commons.wikimedia.org/wiki/File:Str%C3%A1%C5%BE_panely.jpg AUTOR NEUVEDEN. Wikipedia.cz [online]. [cit. 20.6.2013]. Dostupný na WWW: http://commons.wikimedia.org/wiki/File:Panneaux_solaires_thermique_et_PV.jpg AUTOR NEUVEDEN. wikipedia.org [online]. [cit. 20.6.2013]. Dostupný na WWW: http://commons.wikimedia.org/wiki/File:Solar_two.jpg