INVERZNÍ FUNKCE Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.

Slides:



Advertisements
Podobné prezentace
Pojem FUNKCE v matematice
Advertisements

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR.
ARITMETICKÁ POSLOUPNOST
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/ Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová.
GRAFY SLOŽENÝCH GONIOMETRICKÝCH FUNKCÍ
SMĚRNICOVÝ TVAR ROVNICE PŘÍMKY
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Projekt OP VK č. CZ.1.07/1.5.00/ Šablony Mendelova střední škola, Nový Jičín Tento projekt je spolufinancován ESF a státním rozpočtem ČR. Byl uskutečněn.
Lineární funkce Zdeňka Hudcová Přehled učiva ÚvodÚvod Definice a=b=0 a=0 b=0 Vyšetření monotonie Průsečík s y Úkol 1 Úkol 2Definice a=b=0a=0 b=0Vyšetření.
Lineární funkce Zdeňka Hudcová Přehled pro žáky se SPU doc pdf ÚvodÚvod Definice a=b=0 a=0 b=0 Vyšetření monotonie Průsečík s y Úkol 1 Úkol 2Definice a=b=0a=0.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_95.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Šablona:III/2č. materiálu:VY_32_INOVACE_149 Jméno autora: Mgr. Tomáš FULÍN Třída/ročník: PS2 / 2.ročník Datum vytvoření: Vzdělávací oblast:Matematika.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B09 AutorRNDr. Marcela Kepáková Období vytvořeníProsinec.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
ÚHEL DVOU VEKTORŮ Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR Poznámky v PDF.
EXPONENCIÁLNÍ ROVNICE- řešení logaritmováním Mgr.Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Funkce a jejich vlastnosti
FUNKCE. Závislost délky vegetační sezóny na nadmořské výšce
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
NEURČITÝ INTEGRÁL Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR Poznámky v PDF.
PARABOLA Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
VARIACE S OPAKOVÁNÍM Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Repetitorium z matematiky Podzim 2012 Ivana Medková
POSLOUPNOST Mgr.Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
LOGARITMICKÉ ROVNICE Mgr.Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR 1.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
DEFINICE GONIOMETRICKÝCH FUNKCÍ
LIMITA FUNKCE Mgr. Martina Fainová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR POZNÁMKY ve formátu PDF.
Funkce sinus (8). Projekt: CZ.1.07/1.5.00/ OAJL - inovace výuky Příjemce: Obchodní akademie, odborná škola a praktická škola pro tělesně postižené,
Goniometrické rovnice (1) (17). Projekt: CZ.1.07/1.5.00/ OAJL - inovace výuky Příjemce: Obchodní akademie, odborná škola a praktická škola pro.
Funkce tangens (10). Projekt: CZ.1.07/1.5.00/ OAJL - inovace výuky Příjemce: Obchodní akademie, odborná škola a praktická škola pro tělesně postižené,
Funkce Funkce je zobrazení z jedné číselné množiny do druhé, nejčastěji Buď A a B množiny, f zobrazení. Potom definiční obor a obor hodnot nazveme množiny:
Funkce Pojem funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Funkce a jejich vlastnosti
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Inverzní funkce k funkcím goniometrickým (2)
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Obrazy útvarů souměrně sdružených podle osy souměrnosti
GRAFY SLOŽENÝCH GONIOMETRICKÝCH FUNKCÍ
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_120.MAT.02 Logaritmická funkce.
Graf a vlastnosti funkce
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Graf, vlastnosti - výklad
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_117.MAT.02 Inverzní funkce.
Funkce Pojem funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Obor hodnot funkce Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Yvonna Vančurová. Materiál byl vytvořen v rámci projektu „Škola.
Funkce a jejich vlastnosti
Obrazy útvarů souměrně sdružených podle osy souměrnosti
Posun grafu funkce tangens a kotangens po ose y
Výuka matematiky v 21. století na středních školách technického směru
Výuka matematiky v 21. století na středních školách technického směru
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Změna oboru hodnot u funkcí sin x a cos x
Transkript prezentace:

INVERZNÍ FUNKCE Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR

DEFINICE Inverzní funkce k prosté funkci f je funkce f -1, pro kterou platí: 1. D f-1 =H f 2. Každému y z definičního oboru inverzní funkce je přiřazeno právě to x z definičního oboru funkce f, pro které platí f(x)=y (H f-1 =D f )

PŘÍKLAD Jedána funkce f: Zapiš obor hodnot dané funkce, napiš předpis funkce inverzní, sestroj graf Inverzní funkce Předpis pro inverzní funkci získáme úpravou původního předpisu a záměnou x za y a naopak: Po záměně

f -1 x fx Grafy funkce a funkce k ní inverzní jsou souměrně sdružené podle osy I. a III, kvadrantu

ÚKOLY Jsou dány funkce v oboru R: Rozhodni, ke kterým z nich existují inverzní funkce, popř., načrtni grafy