Vytvořila: Pavla Monsportová 2.B

Slides:



Advertisements
Podobné prezentace
Pythagorova věta a její odvození
Advertisements

Pythagoras 6.století př. n. l..
PYTHAGOROVA VĚTA Věta k ní obrácená.
Pythagorova věta Mgr. Dalibor Kudela
Goniometrické funkce Řešení pravoúhlého trojúhelníku
EUKLIDOVY VĚTY A PYTHAGOROVA VĚTA
Matematika – 8.ročník Pythagorova věta
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G
NÁZEV ŠKOLY: Základní škola Nový Jičín, Komenského 66, p. o
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: , ; fax:
Pythagorova věta užití v prostoru
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Střední odborné učiliště Liběchov Boží Voda Liběchov Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:IV/2 Inovace a zkvalitnění výuky.
Pythagorova věta – úvod
Základní škola Ostrava – Hrabová Microsoft Office PowerPoint 2003
14_Řešení pravoúhlého trojúhelníka – Euklidovy věty
VY_42_INOVACE_109_PYTHAGOROVA VĚTA Jméno autora VMM. Lačná Datum vytvoření VMříjen 2011 Ročník použití VM8. ročník Vzdělávací oblast/obormatematika Anotace.
PYTHAGOROVA VĚTA Výuková prezentace.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:8. ročník – Matematika a její aplikace – Matematika – Pythagorova věta autor.
* Pythagorova věta Matematika – 8. ročník *
Pythagorova věta Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Pythagorova věta.
Tento digit á ln í učebn í materi á l (DUM) vznikl na z á kladě ře š en í projektu OPVK, registračn í č í slo CZ.1.07/1.5.00/ s n á zvem „ Výuka.
* Pythagorova věta Matematika – 8. ročník *
Pravoúhlý trojúhelník
Pythagorova věta 8. ročník
Grafický zápis algoritmů (vývojové diagramy) Test na trojúhelník (trojúhelníková nerovnost) Maximum ze tří čísel s použitím pomocné proměnné Pravoúhlý.
Vypracovala: Pavla Monsportová 2.B
PYTHAGOROVA VĚTA PŘÍKLADY
Základní škola a mateřská škola T. G. Masaryka Milovice, Školská 112, Milovice projekt v rámci Operačního programu VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST.
PLANIMETRIE Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T.G. Masaryka, Kostelec nad Orlicí Autor: Mgr. Renata Čermáková.
Metodické pokyny Materiál je určen pro 4. ročník 6letého a 2. ročník 4letého studia. Výklad slouží k odvození vět, které platí pro pravoúhlý trojúhelník.
Pythagorova věta – historie
Pythagorova věta.
Opakování Víš, co je to druhá mocnina ? Je to součin dvou sobě rovných činitelů. a 2 = a.a.
Autor: Mgr. Jana Pavlůsková Datum: květen 2012 Ročník: 6. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
* Thaletova věta Matematika – 8. ročník *
Výukový materiál zpracován v rámci projektu EU peníze školám
Matematika Vytvořila: Ing. Silva Foltýnová Pravoúhlý trojúhelník DUM číslo: 09 Pravoúhlý trojúhelník Planimetrie – Pravoúhlý.
Matematika 8.ročník ZŠ Pythagorova věta Creation IP&RK.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
AnotacePrezentace, která se zabývá opakováním a doplněním znalostí o pravoúhlém trojúhelníku. AutorMgr. Václav Simandl JazykČeština Očekávaný výstupŽáci.
PRAVOÚHLÝ TROJÚHELNÍK V ROVINNÝCH GEOMETRICKÝCH OBRAZCÍCH
Pythagorova věta Pythagoras 570 př.n.l. – 510 př.n.l.
Pravoúhlý trojúhelník (procvičování)
Pythagorova věta Mgr. Petra Toboříková Vyšší odborná škola zdravotnická a Střední zdravotnická škola, Hradec Králové, Komenského 234.
Pravoúhlý trojúhelník sekunda - osmileté studium Mgr. Štěpánka Baierlová Gymnázium Sušice Pythagorova věta.
Pythagorova VĚTA. PYTHAGORAS (6. století před naším letopočtem) Πυθαγορασ (Pí & ypsílon & théta & alfa & gamma & omíkron & ró & alfa & sígma)
PYTHAGOROVA VĚTA Pythagorova Pythagorova věta a věta k ní obrácená.
VY_42_INOVACE_33_Významní matematici Základní škola a Mateřská škola Choustník, okres Tábor.
PYTHAGORAS ŘECKÝ MATEMATIK PYTHAGORŮV ŽIVOT Pythagoras ze Samu, okolo 570 př. n. l. ostrov Samos – po 510 př. n. l. 570 př. n. l.Samos510 př. n. l. o.
PYTHAGORAS Šimon Úradník.
Vytvořil Aleš Veselý 9.A 7.Zš Kladno
PYTHAGOROVA VĚTA Věta k ní obrácená
Název: VY_32_INOVACE_MA_8A_12I Škola:
Pythagorova věta 7. třída Lenka Betlachová.
Název školy: ZŠ a MŠ Březno
Pythagorova věta – popisuje vztahy stran v pravoúhlém trojúhelníku
Pravoúhlý trojúhelník, Pythagorova věta, přepona, odvěsna
PYTHAGOROVA VĚTA Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost   
PYTHAGOROVA VĚTA Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: TROJÚHELNÍK-testy
Pythagorejská škola.
Název projektu: Učíme obrazem Šablona: III/2
PYTHAGOROVA VĚTA Věta k ní obrácená
EUKLIDOVA VĚTA O VÝŠCE:
Pythagorova věta.
Transkript prezentace:

Vytvořila: Pavla Monsportová 2.B PYTHAGORAS Vytvořila: Pavla Monsportová 2.B

Život Žil okolo 570 př. n. l. Legendární řecký filosof, matematik a astronom Založil významnou školu Byl nazýván: „otec čísel“ Autor „Pythagorovy věty“

Pythagorova věta Popisuje vztah, který platí mezi délkami stran pravoúhlých trojúhelníků Obsah čtverce sestrojeného nad přeponou (nejdelší stranou) pravoúhlého rovinného trojúhelníku je roven součtu obsahů čtverců nad jeho odvěsnami (dvěma kratšími stranami). a2 + b2 = c2 Existuje velmi mnoho důkazů Pythagorovy věty (uvádí se, že až 300)

Důkaz Pythagorovy věty Grafický důkaz Čtverec o straně a + b můžeme složit dvěma způsoby: ze 4 pravoúhlých ▲ a dvou čtverců o stranách a a b ze 4 pravoúhlých ▲ a jednoho čtverce o straně c Obsah čtverce je při obou případech stejný => Pythagorova věta

„Možná máš pravdu, Pythagore, ale všichni se ti budou smát, když to nazveš PŘEPONOU.“