Rozcvička Urči typ funkce:.

Slides:



Advertisements
Podobné prezentace
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Didaktika matematiky Akademický rok: 2003 – 2004 Zpracoval: Jan.
Advertisements

Rozcvička Urči typ funkce:
Exponenciální funkce Exponenciální funkcí o základu a nazýváme každou část funkce, která je dána rovnicí: Dostupné z Metodického portálu ISSN: 1802–4785,
Pojem funkce Lineární funkce Kvadratické funkce
Základy infinitezimálního počtu
. Kvadratická funkce ° Narýsuj: -1 -1
KVADRATICKÁ FUNKCE.
určení vrcholu paraboly sestrojení grafu
Čihák Plzeň 2013, 2014 Funkce 11 Kvadratická funkce 3.
Rozcvička Urči typ funkce: Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Název školy Integrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektu CZ.1.07/1.5.00/ Inovace vzdělávacích metod.
CZECH SALES ACADEMY Trutnov – střední odborná škola s.r.o.
Výukový materiál vytvořený v rámci projektu „EU peníze školám“ Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění.
Kvadratická funkce Lukáš Zlámal.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Kvadratická funkce. Co je to funkce Každému prvku x z definičního oboru je přiřazeno právě jedno číslo y z oboru hodnot x je nezávisle proměnná y je závisle.
 y= ax 2 + bx + c  a,b,c jsou koeficienty kvadratické funkce  a  0  ax 2 kvadratický člen  bx lineární člen  c absolutní člen - číslo.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A17 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
VLASTNOSTI FUNKCÍ Příklady.
Procvičování vlastnosti kvadratické funkce. Určete vlastnosti funkcí z minulého procvičování.
Funkce lineární kvadratická nepřímá úměrnost exponenciální
graf kvadratické funkce
vlastnosti lineární funkce
Elektronická učebnice - II
2. M Definiční obor, obor funkce. Vrchol paraboly: V=[1;-4]  Minimum funkce (nejnižší bod)  Mění se průběh funkce V=[1;-4]  Minimum funkce (nejnižší.
Čihák Plzeň 2013, 2014 Funkce 10 Kvadratická funkce 2.
Graf funkce Graf = množina bodů, jejichž souřadnice splňují předpis dané fce. Př.: Leží bod A[-2;7] na grafu fce dané rovnicí y=6x +19 ? Řešení: y=6x.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
MIROSLAV KUČERA Úvodní informace Matematika B 2
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Graf nepřímé úměrnosti
Funkce Absolutní hodnota
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Repetitorium z matematiky Podzim 2012 Ivana Medková
9. Vlastnosti funkcí – rostoucí a klesající funkce - příklady
Graf kvadratické funkce
Průběh funkce 2. M.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Kvadratická funkce – vrchol paraboly
Graf nepřímé úměrnosti
Matematický milionář Foto: autor Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Vrchol paraboly.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Rozcvička Urči typ funkce:
Cvičení V této kapitole můžete procvičit probrané téma. Jednotlivá cvičení obsahují správné řešení s postupem. Po zobrazení zadání se dalším(dalšími) kliknutím(kliknutími)
VY_32_INOVACE_FCE1_08 Funkce 1 Kvadratická funkce.
VY_32_INOVACE_RONE_08 Rovnice a nerovnice Kvadratická funkce.
Rozcvička Urči typ funkce:
7.6 Doplnění na čtverec Mgr. Petra Toboříková
Funkce Absolutní hodnota
Graf kvadratické funkce
Rostoucí, klesající, konstantní
Graf, vlastnosti - výklad
Rozcvička Urči typ funkce:
Rostoucí, klesající, konstantní
KUŽELOSEČKY 4. Parabola Autor: RNDr. Jiří Kocourek.
8. Vlastnosti funkcí – monotónnost funkce
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Kvadratická funkce Funkce daná rovnicí , kde . Definiční obor:
Výuka matematiky v 21. století na středních školách technického směru
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_103.MAT.02 Vrchol paraboly.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Obecná ROVNICE PARABOLY
Lineární funkce 2 šestiminutovka
Lineární funkce 3 desetiminutovka
MATEMATIKA Kvadratická funkce Příklady.
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Kvadratická funkce Matematika – 9.ročník VY_32_INOVACE_
Transkript prezentace:

Rozcvička Urči typ funkce:

Rozcvička Doplň chybějící souřadnici:

Kvadratická funkce x y Narýsuj graf funkce: Vlastnosti funkce 9 graf – parabola D(f) = R H(f) = 0;  vrchol paraboly v bodě V[0; 0] souměrná podle osy y klesající v D(f) = (-; 0 rostoucí v D(f) = 0;  x = 0 – nejmenší hodnota fce = minimum x x 4 x x x -3 -2 -1 2 3

Kvadratická funkce x y Narýsuj graf funkce: Vlastnosti funkce graf – parabola D(f) = R H(f) = (-; 0 vrchol paraboly v bodě V[0; 0] souměrná podle osy y rostoucí v D(f) = (-; 0 klesající v D(f) = 0;  x = 0 – největší hodnota fce = maximum

Kvadratická funkce Rovnice: Vlastnosti kvadratické funkce graf – parabola D(f) = R parabola má vrchol V souměrná podle osy y je rostoucí i klesající má maximum nebo minimum

Kvadratická funkce v závislosti na a je-li a>0, potom má kvadratická funkce vždy minimum

Kvadratická funkce v závislosti na a je-li a<0, potom má kvadratická funkce vždy maximum

Kvadratická funkce

Kvadratická funkce

Kvadratická funkce Narýsuj graf funkce f: y = - x2 urči největší hodnotu této funkce b) jaká je hodnota této funkce pro x = 2 c) pro která x je hodnota této funkce rovna (-1) d) v jakém intervalu je tato funkce rostoucí e) pro která x je hodnota této funkce největší

Doplň hodnoty funkce y = 3x2 do tabulky: Kvadratická funkce Doplň hodnoty funkce y = 3x2 do tabulky: x - 3 1 2 -5 0,6 -0,8 -2 0,1 y

Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ] bod E nepatří do dané fce

Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ]

Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ]

Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ]

Kvadratická funkce Na grafu kvadratické funkce y = ax2 leží bod A[ -3 ; -18 ] b) B[ -2 ; -10 ] c) C[ 2 ; 2 ] Urči čemu se rovná a.

Kvadratická funkce Narýsuj: -2 o