Halogeny – prvky VII.A skupiny, 17. skupina

Slides:



Advertisements
Podobné prezentace
Halogeny.
Advertisements

HALOGENY.
Halogeny – prvky VII.A skupiny
Halogeny Aktivita č. 6: Poznáváme chemii Prezentace č. 5
H A L O G E N Y.
Číslo projektuCZ.1.07/1.5.00/ Číslo materiáluVY_32_INOVACE_CH01 Název školy Církevní střední odborná škola Bojkovice Husova 537, Bojkovice
Alkalické kovy Přírodovědný seminář – chemie 9. ročník Základní škola Benešov, Jiráskova 888 Ing. Bc. Jitka Moosová.
Elektronické učební materiály – II. stupeň Chemie 9 Autor: Mgr. Radek Martinák REDOXNÍ REAKCE ELEKTROLÝZA výroba chloru „elektrolyzér“ rozklad vody.
VÝZNAMNÉ NEKOVY. VODÍK značka H latinský název Hydrogenium 1 1 H (1p +, 1e - ) nejrozšířenější izotop tvoří dvouatomové molekuly H 2 Obr. 1: atom vodíku.
Základní škola a Mateřská škola Dobrá Voda u Českých Budějovic, Na Vyhlídce 6, Dobrá Voda u Českých Budějovic EU PENÍZE ŠKOLÁM Zlepšení podmínek.
Jak se získávají kovy z rud, od železné rudy k oceli Chemie 9. ročník Základní škola Benešov, Jiráskova 888 Ing., Bc. Jitka Moosová.
ALKENY. DEFINICE ● Alkeny jsou uhlovodíky, které mají v otevřeném uhlíkatém řetězci mezi atomy uhlíku jednu dvojnou vazbu.
HALOGENY Tato práce je šířena pod licencí CC BY-SA 3.0. Odkazy a citace jsou platné k datu vytvoření této práce. VY_32_INOVACE_02_26.
Název sady materiálů: Přírodopis 9 Název materiálu: VY_32_INOVACE_Př_9_1801_Přehled_nerostů_I._ prvky_halogenidy Autor: RNDr. Josef Snopek Anotace: projekce.
Výukový materiál zpracovaný v rámci projektu OPVK Pořadové číslo projektu:CZ.1.07/1.4.00/ Základní škola Bedřicha Hrozného, Lysá nad Labem, okres.
ZÁKLADNÍ ŠKOLA SLOVAN, KROMĚŘÍŽ, PŘÍSPĚVKOVÁ ORGANIZACE ZEYEROVA 3354, KROMĚŘÍŽ projekt v rámci vzdělávacího programu VZDĚLÁNÍ PRO KONKURENCESCHOPNOST.
Základní škola M.Kudeříkové 14, Havířov-Město, příspěvková organizace Projekt: Tvorba inovativních výukových materiálů Šablona: „Přírodní vědy“ Předmět:
NÁZVOSLOVÍ. Názvosloví Oxidační číslo  formální náboj, který by byl na atomu, pokud bychom elektrony vazeb přiřadili atomu s vyšší elektronegativitou.
Číslo projektu CZ.1.07/1.4.00/ Název sady materiálů Chemie 9. roč. Název materiálu VY_32_INOVACE_16_Bezkyslíkaté kyseliny Autor Melicharová Jana.
Kyslíkaté kyseliny Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Soli. Jsou chemické látky, které obsahují kationt kovu (nebo amonný kationt NH 4 + ) a aniont kyseliny.
Číslo projektu CZ.1.07/1.4.00/ Název sady materiálů Chemie 9. roč. Název materiálu VY_32_INOVACE_01_19 Neutralizace Autor Melicharová Jana.
VÝZNAMNÉ KYSLÍKATÉ KYSELINY. KYSELINA SÍROVÁ Vlastnosti: Bezbarvá olejovitá kapalina Koncentrovaná (96%) je silná žíravina Její hustota je téměř 2x větší.
Číslo projektu CZ.1.07/1.4.00/ Název sady materiálů Chemie 8. roč. Název materiálu VY_32_INOVACE_11_Vlastnosti a použití hydroxidů Autor Melicharová.
ZÁKLADNÍ ŠKOLA SLOVAN, KROMĚŘÍŽ, PŘÍSPĚVKOVÁ ORGANIZACE ZEYEROVA 3354, KROMĚŘÍŽ projekt v rámci vzdělávacího programu VZDĚLÁNÍ PRO KONKURENCESCHOPNOST.
HalogenyHalogeny. PrvekX I I [kJ mol -1 ] ρ [g cm -3 ] b. t. [°C] b. v. [°C] r [pm] F 4,016810, Cl 3,212510, Br 3,011403,
Název školy: Základní škola a Mateřská škola, Police nad Metují, okres Náchod Autor: Stejskalová Hana Název : VY_32_INOVACE_11C_20_Halogenidy Téma: Chemie.
IONTY. Název školy: Základní škola a Mateřská škola Kokory Autor: Mgr. Jitka Vystavělová Číslo projektu: CZ.1.07/14.00/ Datum: Název.
Základní škola a Mateřská škola Bílá Třemešná, okres Trutnov Škola pro 21. století Autor: Ing. Minářová Pavlína Datum/období: říjen 2013 Číslo projektu:
Název projektu: Zkvalitnění výuky cizích jazyků
Elektrolyty Elektrolyty jsou roztoky nebo taveniny, které vedou elektrický proud. Vznikají obvykle rozpuštěním iontových sloučenin v polárních rozpouštědlech.
Halové prvky Halogeny Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Výukový materiál zpracován v rámci projektu
Kyslíkaté kyseliny Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
CHEMIE - Sloučeniny dusíku
Uran, U, Uranium Jiří Pagáč 25. dubna 2012.
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor: Mgr. Monika Zemanová, PhD. Název materiálu:
Halogeny Obr. 1 fluor Obr. 2 chlor brom jod
Wolfram Denisa Dolanská.
VY_52_INOVACE_08 Základní škola a Mateřská škola, Chvalkovice, okres Náchod cz. 1.07/1.4.00/ „Blíže k přírodním vědám“ Mgr. Markéta Ulrychová  
Hafnium a Zirkonium.
NÁZEV ŠKOLY: ZŠ Dolní Benešov, příspěvková organizace
Beryllium Alžběta Gricová 4.B.
NÁZEV ŠKOLY: ZŠ J. E. Purkyně Libochovice
Prvky 3.skupiny skandium, yttrium, lanthan a aktinium
Názvosloví dvouprvkových sloučenin
Číslo projektu CZ.1.07/1.4.00/ Název sady materiálů Chemie 8. roč.
Autor: Mgr. M. Vejražková VY_32_INOVACE_16_Halogeny
Autor: Stejskalová Hana
Mangan.
ZÁKLADNÍ ŠKOLA SLOVAN, KROMĚŘÍŽ, PŘÍSPĚVKOVÁ ORGANIZACE
NÁZEV ŠKOLY: ZŠ J. E. Purkyně Libochovice
1. skupina PS: Vodík Izotop H D T Výskyt: 89 % vesmír;
2. Základní chemické pojmy Obecná a anorganická chemie
Obecná a anorganická chemie
CHEMICKÉ NÁZVOSLOVÍ dvouprvkových sloučenin
6. Využívání a znečišťování vody Základy ekologie pro střední školy 1.
14. Vlastnosti a reakce p5 prvků, významné sloučeniny halogenů
Mineralogický systém II. Halogenidy
17 skupina.
CHEMIE - Chemická vazba
Halogenidy Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
S-prvky Jan Dvořák 4.A.
NÁZEV ŠKOLY: ZŠ J. E. Purkyně Libochovice
Mgr. Jana Schmidtmayerová
Halogeny.
Jejich příprava a reaktivita
Voda, vzduch Vodík, kyslík.
Kyslík - Oxygenium PSP IV.A skupina  6 valenčních elektronů
NÁZEV ŠKOLY: Masarykova základní škola a mateřská škola Melč, okres Opava, příspěvková organizace ČÍSLO PROJEKTU: CZ.1.07/1.4.00/ AUTOR: Mgr. Lumír.
Transkript prezentace:

Halogeny – prvky VII.A skupiny, 17. skupina

charakteristika: p – prvky - valenční elektrony mají v orbitalech s a p a to celkem 7 val. elektronů elektronegativita jejich atomů roste od astatu k fluóru v přírodě se nevyskytují čisté, ale i v minerálech jejich atomy reaktivní, do oktetu jim chybí pouze 1 elektron, který získávají od atomu prvku se kterým vstupují do vazby

fluór (9F) historie: název od minerálu fluoritu, který se dříve používal jako tavidlo (z latinského fluo = téci) – v hutích používán pro snížení teploty při roztavování rud název navrhl roku 1812 A. M. Ampere Siru Davymu zvláštní vlastnosti kazivce vydávat po zahřátí světlo (fluorescence) objeveny již v 17. století pokusy o přípravu fluoru chemickou cestou vždy ztroskotaly na jeho extrémní reaktivitě

výskyt: fluorit=kazivec - CaF2 kryolit - Na3AlF6 fluoroapatit - Ca5F(PO4)3

průmyslová výroba: jediným prakticky používaným způsobem výroby je Moissanova metoda, která je založena na elektrolýze směsi fluoridu draselného a bezvodého fluorovodíku H2 a F2 spolu reagují velmi explozivně, a proto musí být prostor mezi katodou a anodou oddělen diafragmou teplota i výška hladiny elektrolytu jsou řízeny automaticky nádoba z měkké oceli je zároveň katodou, anoda je tyč z kompaktního negrafitizovaného uhlíku

fyzikální vlastnosti: světle žlutý plyn molekula biatomická nejčastěji v plynném stavu jedovatý, pronikavě dráždivý zápach

nejreaktivnější ze všech prvků chemické vlastnosti: nejreaktivnější ze všech prvků reaguje se všemi prvky vyjma helia, argonu a neonu, s některými za vzniku tepla a světla velmi silné oxidační činidlo s vodíkem se slučuje i v temnu a při velmi nízkých teplotách explozivně tendence odebírat vodík jiným sloučeninám: 2H2O + 2F2 → O2 + 4HF

využití: většina vyrobeného fluoru (70 – 80%) se používá k výrobě fluoridu uranového (UF6) pro potřeby jaderných elektráren výroba teflonu

sloučeniny: fluorovodík silně páchnoucí bezbarvý plyn bezvodý fluorovodík se vyrábí působením kyseliny sírové na kazivec=fluorit: CaF2(s) + H2SO4(l) → 2HF(g) + CaSO4(s) reakce endotermická, proto se provádí za zvýšené teploty

fluorovodík leptá sklo: SiO2 + 4HF → SiF4 + 2H2O kyselina fluorovodíková je bezbarvá kapalina, lze ji připravit rozpouštěním fluorovodíku ve vodě fluorovodík i kyselina silně leptají tkáně

využití: dnes se používá k výrobě syntetického kryolitu (zvýšená výroba hliníku) při leptání skla k výrobě fluoridů výroba kyselých pracích prostředků

fluorid sodný fluoridace vody konzervování dřeva výroba insekticidů a fungicidů fluorid cínatý do zubních past k prevenci tvorby zubního kazu

vyskytuje se pouze ve sloučeninách chlór (17Cl ) historie: v roce 1779 připravil švédský lékárník C.W. Scheele chlór reakcí kyseliny chlorovodíkové s oxidem manganičitým. název chlóru, který v roce 1811 navrhl H. Davy, vychází z charakteristické barvy tohoto plynu (řecké chloros znamená nažloutlý nebo světle zelený). výskyt: vyskytuje se pouze ve sloučeninách největší zásoby chloridů jsou v mořské vodě menší množství chloridů je ve vodách některých vnitrozemských moří a slaných jezer sylvín – KCl, halit - NaCl v žaludeční šťávě je asi 0,5% HCl (aktivuje pepsin)

průmyslová výroba: elektrolýza je výrobní postup, kdy elektrolytem prochází el. proud, díky průchodu el. proudu elektrolytem kationty a anionty putují k elektrodám (katodě a anodě) na katodě probíhá redukce kationtů, na anodě probíhá oxidace aniontů, elektrody mají el. náboj elektrolýza taveniny NaCl elektrolýza vodného roztoku NaCl

fyzikální vlastnosti: žlutozelený plyn charakteristického zápachu ve vyšších koncentracích toxický biatomická molekula dvaapůlkrát těžší než vzduch

chemické vlastnosti: velmi reaktivní reaguje se všemi prvky kromě kyslíku, dusíku, vzácných plynů a platinových kovů oxidační činidlo ve vodě rozpustný, reaguje s vodou a vzniká chlorová voda: Cl2 + H2 O → HCl + HClO na světle pokračuje rozklad kyseliny chlorné na kyselinu chlorovodíkovou a kyslík:

HClO → HCl + O využití: výroba chlorovaných organických sloučenin (vinylchlorid) bělení papíru, textilu a celulózy dezinfekce pitné a užitkové vody (v plaveckých bazénech, vodárnách a odpadních stokách)

sloučeniny: chlorovodík výroba: spalováním vodíku v chloru: H2 + Cl2 → 2HCl vytěsňování chlorovodíku z chloridu sodného koncentrovanou kyselinou sírovou: 2NaCl + H2SO4 → 2HCl + Na2SO4 (600 °C) bezbarvý plyn ostře štiplavého zápachu těžší než vzduch

kyselina chlorovodíková výroba - reakcí chlorovodíku a vody silná kyselina koncentrovaná 37%, 42% - dýmavá kyselina využití: výroba chloroprenu a PVC příprava chloridů

chloridy podle způsobu vazby rozdělujeme chloridy: iontové kovalentní podle rozpustnosti ve vodě: chloridy nerozpustné ve vodě (Ag, Hg, Pb) chloridy rozpustné ve vodě (CaCl2, FeCl3)

kyselina chlorná slabá kyselina málo stálá známá pouze ve vodných roztocích

soli – chlornany silná oxidační činidla desinfekční a bělící činidla vznikají zaváděním chlóru do roztoků hydroxidů: 2NaOH(aq) + Cl2 → NaClO(aq) + NaCl + H2O

soli - chlorečnany vznikají zaváděním chlóru do hydroxidu: 6KOH + 3Cl2 → KClO3 + 5KCl + 3H2O chlorečnan sodný - herbicid, sušení sojových bobů chlorečnan draselný - složka zápalných směsí pro hlavičky zápalek

chlornan sodný – obsažen např. v Savu chlorovaný fosforečnan trisodný (Na3PO4 · 11H2O)4 · NaClO – detergent v myčkách nádobí chlornan vápenatý – bělení papíru chlorové vápno Ca(ClO)2·CaCl2·Ca(OH)2 · 2H2O, bělení a desinfekce

soli – chloristany silná oxidační činidla chloristan amonný - oxidační činidlo pro raketové palivo chloristan draselný - hlavní složka pyrotechnických směsí pro ohňostroje

bróm (35Br) historie: bróm izoloval v roce 1826 A. J. Balard z matečného roztoku po krystalizaci síranu a chloridu sodného z vody Montpellierských slaných bažin název dostal (z řeckého brómos = zápach) pro svůj nepříjemný pronikavý zápach

výskyt: je velmi reaktivní proto se vyskytuje pouze ve sloučeninách hlavním přírodním zdrojem brómu jsou bromidy obsažené v mořské vodě atomární poměr chlóru a brómu v mořské vodě je 660:1 minerály

laboratorní příprava laboratorně se získává zahřívání bromidu draselného s oxidem manganičitým: 2KBr + MnO2 + 2H2SO4 → Br2 + K2SO4 + MnSO4 + 2H2O průmyslová výroba oxidací bromidů chlorem KBr + Cl2 → KCl + Br2

fyzikální vlastnosti: tvoří biatomické molekuly tmavě červená zapáchající kapalina leptá sliznice a dráždí ke kašli rozpustný ve vodě – nasycený roztok se nazývá bromová voda chemické vlastnosti: má oxidační vlastnosti

využití: výroba bromovaných organických sloučenin – účinné nematocidy (prostředek h hubení červů), pesticidy výroba léčiv - Bromhexin

sloučeniny: bromovodík vyrábí se katalyzovanou syntézou vodíku a brómu H2 + Br2 → 2HBr (200 - 400 °C / Pt ) mezi molekulami nedochází k vytváření vodíkových vazeb bromovodík je bezbarvý plyn pronikavého zápachu katalyzátor v organické chemii

bromidy většinou bezbarvé látky, pokud zabarvení není způsobeno kationtem většina bromidů je rozpustných ve vodě nerozpustný je bromid stříbrný, rtuťný a měďný

jód (53I) historie: připravil ho vyluhováním popela mořských chaluh kyselinou sírovou o dva roky později jej pojmenoval podle charakteristické vlastnosti – fialové barvy podobné fialkám – (ioeidés z řečtiny) – L. Gay Lussac

výskyt: roku 1840 byla zjištěna přítomnost jodičnanu sodného v chilském ledku Chile největším světovým producentem jódu až do 60. let 20. století, kdy ve státě Michigan a v Japonsku zahájena těžba jodidů z vod slaných jezer a bažin jodobromové vody – lázně Darkov, Klimkovice minerály

průmyslová výroba: jodidy obsažené v solankách se oxidují chlórem na jód, který se z roztoku vyhání proudem vzduchu a přečistí se sublimací fyzikální vlastnosti: jemná černofialová, páchnoucí krystalická látka jedovatý, leptavý, snadno sublimuje, ve vodě málo rozpustný jódová tinktura - 6,5% lihový roztok

chemické vlastnosti: biatomická molekula reaguje s méně prvky než fluór, chlór, bróm slabé oxidační činidlo při reakci se škrobovým roztokem vzniká intenzivní modré zabarvení, to při zahřátí zmizí, ale po ochlazení se obnoví (změna struktury škrobu) - důkaz jódu nebo škrobu

využití: asi 1/2 se zpracovává na organické sloučeniny doplněk stravy dobytka a drůbeže výroba léků dezinfekcí (jodová tinktura = jód + ethanol = účinné antiseptikum)

sloučeniny: jodovodík bezbarvý plyn, páchne, dráždí ke kašli, leptá sliznici ve vodě se rozpouští na kyselinu jodovodíkovou jodidy většina jodidů ve vodě rozpustná nerozpustné jodid stříbrný, jodid thalný, jodid olovnatý

kyselina jodičná (HIO3) tvoří bílé krystalky,dobře rozpustné ve vodě silné oxidační činidlo kyselina jodistá (HIO4) bezbarvá krystalická látka

kyselina pentahydrogenjodistá bezbarvá krystalická látka silné oxidační činidlo

astat (85 At) historie: astat (z řeckého astatos - nestálý) bombardováním 209Bi částicemi α připravili v cyklotronu izotop 211At (poločas rozpadu 7,21 hodiny) a 2 neutrony existenci předpověděl Mendělejev, jako ekajód, původně objeven v rudách roku 1935 je známo 24 izotopů astatu, od 196At až k 219At všechny mají krátký poločas rozpadu poločas delší než hodinu mají 211At, 207At, 208At, 209At, 210At největší množství astatu, které bylo připraveno je 0,05 μg

výskyt: astat je článkem radioaktivních rozpadových řad, produkt rozpadu uranových a thoriových rud odhaduje se, že celá zemská kůra obsahuje méně než 44 mg At (srovnání: francia je v zemské kůře 15 g, polonia je 2500 t)

využití: astat je ve srovnání s radioaktivním jódem lepším prostředkem k destrukci anomálních tkání štítné žlázy, protože emitované záření α má ve tkáních kratší dosah (70 μm) a větší energii (5,9 MeV) a tím i lepší lokální účinek než jód, který emituje méně energetického záření β s dosahem až 2000 μm avšak nedostupnost a vysoká cena preparátů obsahujících astat omezují jejich praktické použití