FFZS-02 Mechanika – kinematika a dynamika hmotného bodu

Slides:



Advertisements
Podobné prezentace
Mechanika tuhého tělesa
Advertisements

Přeměny energií Při volném pádu se gravitační potenciální energie mění na kinetickou energii tělesa. Při všech mechanických dějích se mění kinetická energie.
2.2. Dynamika hmotného bodu … Newtonovy zákony
ROVNOMĚRNÝ POHYB PO KRUŽNICI dostředivé zrychlení.
MECHANICKÁ PRÁCE A ENERGIE
MECHANICKÝ POHYB Podmínky používání prezentace
Kinematika hmotného bodu
Mechanika Dělení mechaniky Kinematika a dynamika
2.1-3 Pohyb hmotného bodu.
Mechanika tuhého tělesa
Hybnost, Těžiště, Moment sil, Moment hybnosti, Srážky
5. Práce, energie, výkon.
Vypracoval: Petr Hladík IV. C, říjen 2007
7. Mechanika tuhého tělesa
Základy kinematiky Kinematika hmotného bodu.
Dynamika hmotného bodu
Pohyb rovnoměrný.
FIFEI-03 Mechanika – dynamika hmotného bodu a soustavy hmotných bodů.
Dynamika.
2.3 Mechanika soustavy hmotných bodů Hmotný střed 1. věta impulsová
směr kinematických veličin - rychlosti a zrychlení,
Dynamika rotačního pohybu
Soustava částic a tuhé těleso
FI-05 Mechanika – dynamika II
Technická mechanika 8.přednáška Obecný rovinný pohyb Rozklad pohybu.
MECHANIKA.
Křivočarý pohyb bodu. křivočarý pohyb bodu,
Kmitavý pohyb 1 Jana Krčálová, 8.A.
Dynamika hmotného bodu
2.3 Mechanika soustavy hmotných bodů Hmotný střed 1. věta impulsová
obecný rovinný pohyb tělesa analytické řešení pólová konstrukce
Kinematika a dynamika rovnoměrného pohybu hmotného bodu po kružnici
3. KINEMATIKA (hmotný bod, vztažná soustava, polohový vektor, trajektorie, rychlost, zrychlení, druhy pohybů těles, pohyby rovnoměrné a rovnoměrně proměnné,
Dynamika.
Popis časového vývoje Pohyb hmotného bodu je plně popsán závislostí polohy na čase. Otázkou je, jak zjistit vektorovou funkci času ~r (t), která pohyb.
FIFEI-02 Mechanika – kinematika a dynamika hmotného bodu
Jiný pohled - práce a energie
GRAVITAČNÍ POLE.
4.Dynamika.
1. KINEMATIKA HMOTNÝCH BODŮ
FII-4 Elektrické pole Hlavní body Vztah mezi potenciálem a intenzitou Gradient Elektrické siločáry a ekvipotenciální plochy Pohyb.
Mechanická práce, výkon a energie
Síla.
SOUVISLOST KMITAVÉHO POHYBU S ROVNOMĚRNÝM POHYBEM PO KRUŽNICI
Gravitační pole Pohyby těles v gravitačním poli
KINEMATIKA - popisuje pohyb těles - odpovídá na otázku, jak se těleso pohybuje - nezkoumá příčiny pohybu.
dynamika hmotného bodu, pohybová rovnice, d’Alembertův princip,
FFZS-03 Mechanika – dynamika soustav hmotných bodů a tuhých těles
Rovnováha a rázy.
VÝKON A PŘÍKON.
Dynamika bodu. dynamika hmotného bodu, pohybová rovnice,
Dj j2 j1 Otáčivý pohyb - rotace Dj y x POZOR!
Mechanika IV Mgr. Antonín Procházka.
DYNAMIKA Newtonovy zákony: První Newtonův zákon: (zákon setrvačnosti)
HRW kap. 3, také doporučuji projít si dodatek E
Poděkování: Tato experimentální úloha vznikla za podpory Evropského sociálního fondu v rámci realizace projektu: „Modernizace výukových postupů a zvýšení.
Pohyby v homogenním tíhovém poli Země Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Radim Frič. Slezské gymnázium, Opava, příspěvková.
Fyzika pro lékařské a přírodovědné obory Ing. Petr VáchaZS – Mechanika tuhého tělesa.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_43_18 Název materiáluPohyb těles.
Fyzika I-2016, přednáška Dynamika hmotného bodu … Newtonovy zákony Použití druhého pohybového zákona Práce, výkon Kinetická energie Zákon zachování.
Rovnoměrný pohyb po kružnici a otáčivý pohyb
směr kinematických veličin - rychlosti a zrychlení,
Polární soustava souřadnic
Stroje a zařízení – části a mechanismy strojů
Rovnoměrný pohyb po kružnici
MECHANIKA.
Otáčení a posunutí posunutí (translace)
FFZS-02 Mechanika – kinematika a dynamika hmotného bodu
Tuhé těleso Tuhé těleso – fyzikální abstrakce, nezanedbáváme rozměry, ale ignorujeme deformační účinky síly (jinými slovy, sebevětší síla má pouze pohybové.
Valení po nakloněné rovině
Transkript prezentace:

FFZS-02 Mechanika – kinematika a dynamika hmotného bodu http://stein.upce.cz/msfzs15.html http://stein.upce.cz/lectcz/ffzsnnn_02.ppt 25.2.2007 Doc. Miloš Steinhart, UPCE 06 036, ext. 6029 14. 10. 2015

Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrně zrychlený Pohyb v prostoru. Vrhy. Základní dynamické veličiny. Newtonovy zákony. 14. 10. 2015

Soustřeďte se na tyto otázky Přesný význam základních veličin a pojmů kinematiky: poloha, rychlost, zrychlení, pohyby přímočaré a křivočaré. Pohyby po kružnici, periodický pohyb, úhlová rychlost a úhlové zrychlení. Přesný význam základních veličin a pojmů dynamiky: Hybnost, síla, Newtonovy pohybové zákony, impuls síly, mechanická práce, kinetická energie, výkon 14. 10. 2015

Úvod do mechaniky Budeme se zabývat klasickou mechanikou. Studované objekty jsou nadmolekulárních velikostí a Pohybují se rychlostmi mnohem menšími než c. Kinematika se zabývá pouze popisem pohybu a nepátrá po jeho příčinách. Dynamika se zabývá pohybem včetně příčin a zachováním veličin. Hmotný bod má nenulovou hmotnost a zanedbatelné geometrické rozměry. 14. 10. 2015

Kinematika I Kinematika se přednáší zvláště proto, že zde lze na známých a snadno pochopitelných představách a veličinách ilustrovat postupy řešení problémů ve složitějších oblastech. Například: Prvním krokem řešení problému je zjištění jeho skutečného rozměru a zavedení příslušných souřadnic. Obdobný aparát jako je používán u rovnoměrného přímočarého pohybu, který lze popsat skalárně, lze aplikovat u popisu časového vývoje jiných veličin, např. koncentrace. 14. 10. 2015

Kinematika II Poloha hmotného bodu je určena polohovým vektorem = (x1, x2, x3). Průměrná rychlost v = s/t = celková dráha/čas. Obecně se v průběhu času mění velikost i směr. Okamžitá rychlost = d /dt . (vi = dxi/dt). Má směr tečný k dráze v daném okamžiku. Zrychlení = d /dt = d2 /dt2 . (ai = d2xi/dt2). Je to “rychlost rychlosti”. Směr může být obecně různý, podle okolností. 14. 10. 2015

Kinematika III Vzhledem ke směru rychlosti je účelné rozložit zrychlení na tečné a normálové: Budiž = = v , potom 14. 10. 2015

Kinematika IV Zde  je poloměr křivosti. Je-li  =  , je obecně a jedná se o pohyb přímočarý. Je-li hmotný bod v určitém místě vychýlen z přímočaré trajektorie, musí zde existovat nenulové normálové zrychlení směřující do okamžitého středu křivosti – dostředivé zrychlení. Čím menší je poloměr křivosti, tím ‘ostřejší’ je zatáčka a tím větší musí být normálové zrychlení. 14. 10. 2015

Pohyb přímočarý I Zavádíme souřadnou soustavu tak, aby se jedna osa (např. x) ztotožňovala se směrem pohybu, potom vystačíme se skalární rychlostí v a se skalárním zrychlením a. Pozůstatkem vektorové povahy těchto veličin je jejich orientace. Pohyb rovnoměrný přímočarý v = dx/dt => x(t) = x0 + v t , kde x0 ≡ x(t=0) je integrační konstanta - počáteční podmínky. 14. 10. 2015

Pohyb přímočarý II Pohyb přímočarý rovnoměrně zrychlený . a = dv/dt => v(t) = v0 + a t , kde v0 ≡ x(t=0) je druhá integrační konstanta x(t) = x0 + v0 t + a t2/2 . Po druhé integraci přibyla další integrační konstanta. Počáteční podmínky jsou určeny dvěma nezávislými parametry x0 a v0. Na počátečních podmínkách záleží, zda se jedná o pohyb zrychlený nebo o pohyb zpomalený! 14. 10. 2015

Pohyb přímočarý III Závisí to na zrychlení a i na počáteční rychlosti v0! Je-li v0 > 0 znamená a > 0 pohyb zrychlený a < 0 pohyb zpomalený Ale je-li v0 < 0 je tomu naopak (!) a > 0 pohyb zpomalený a < 0 pohyb zrychlený 14. 10. 2015

Pohyb křivočarý Normálová složka zrychlení musí být obecně alespoň někde nenulová a poloměr křivosti  se může měnit. Speciální případ je pohyb po kružnici. Odehrává se v jedné rovině a poloměr křivosti je konstantní  = r. 14. 10. 2015

Časová závislost nemechanických veličin Jedním z důvodů, proč se vyučuje již celkem probádaná kinematika jsou analogie kinematických a nemechanických veličin. Porozumění časových průběhů takových veličin je značně usnadněno díky tomu, že vzhledem ke každodenní zkušenosti je chápání mechanických veličin je relativně nejsnadnější. Příkladem může být radioaktivní rozpad. 14. 10. 2015

Pohyb po kružnici I Pohyb rovnoměrný je konstantní a zrychlení směřuje neustále do středu otáčení je to tedy zrychlení dostředivé. Při zjednodušeném skalárním popisu ztotožníme osu otáčení s jednou z os souřadné soustavy (z). Hmotný bod prochází pravidelně kruhovou dráhu s = 2 r rychlostí o konstantní velikostí v. Doba jedné otáčky nebo-li perioda je T [s]. Počet otáček za jednotku času f = 1/T se nazývá frekvence f [s-1  Hz]. 14. 10. 2015

Pohyb po kružnici II Při popisu pohybů bodů v konstantní vzdálenosti od středu otáčení je výhodné požívat úhlové veličiny: ds = r d v = ds/dt = r d/dt = r   = 2 f = 2 / T Takto se zavádí úhlová rychlost  [s-1], která je v případě rovnoměrného pohybu konstantní. 14. 10. 2015

Pohyb po kružnici III Po integraci: (t) = 0 +  t s(t) = s0 + r t 0 nebo s0 jsou integrační konstanty opět dané počátečními podmínkami. Skutečná dráha a rychlost mohou záviset na čase: s(t) = r (t) v(t) = r (t) 14. 10. 2015

Pohyb po kružnici IV Při rovnoměrném pohybu po kružnici : Jsou průměty určitého bodu do kolmých os harmonické kmity. Tedy souřadnice hmotného bodu jsou : x(t)=cos (t) = cos(0 +  t) y(t)=sin (t) = sin(0 +  t) 0 se zde nazývá počáteční fáze Dostředivé zrychlení má konstantní velikost: ad = v2/r = 2r = v 14. 10. 2015

Pohyb po kružnici V Pohyb rovnoměrně zrychlený po kružnici. Hmotný bod se pohybuje s konstantním tečným at nebo úhlovým zrychlením  :  = d /dt at = r Po integraci (t) = 0 +  t ~ v(t) = v0 + a t (t) = 0 + 0 t +  t2/2 ~ x(t) = x0 + v0 t + a t2/2 14. 10. 2015

Pohyb po kružnici VI Zda se jedná o pohyb rovnoměrně zrychlený nebo zpomalený, opět závisí na počátečních podmínkách, konkrétně počáteční úhlové rychlosti 0 , která určuje smysl počáteční rotace : Je-li 0 > 0 a  > 0 jde o pohyb zrychlený. Při  < 0 jde o pohyb zpomalený. Je-li 0 < 0 je tomu samozřejmě naopak. 14. 10. 2015

*Pohyb po kružnici VII Protože rovina kruhové dráhy může mít různou polohu v prostoru, je nutné pro úplný popis pohybu použít vektorů Orientovaný úhel má směr normály ke kružnici, orientované tak, že je úhel vidět jako kladný nebo-li pravotočivý(!). Obdobně je definován i směr a orientace úhlové rychlosti a úhlového zrychlení . 14. 10. 2015

*Pohyb po kružnici VIII Jedná-li se o pohyb rovnoměrně zrychlený je orientace vektorů stejná v případě pohybu zpomaleného je jejich orientace opačná. Vektorové vyjádření rychlosti a zrychlení: 14. 10. 2015

Pohyb v prostoru Při obecném pohybu v prostoru je nutné pracovat s vektory a operace se provádějí ve vhodných souřadnicích. Zpravidla se daří problém zjednodušit, když využijeme symetrie a snížíme počet složek, ve kterých dochází ke změně. Příkladem jsou vrhy v blízkosti povrchu Země, odehrávající se ve svislé rovině x,z. 14. 10. 2015

Vrhy U všech vrhů předpokládáme: Zrychlení působí svisle dolů a má velikost tíhového zrychlení. Je vhodné ztotožnit svislý směr s jednou osou, například : = (0, 0, -g) pohyb začíná z bodu = ( x0, y0, z0) s počáteční rychlostí = (vx0, vy0, vz0) Z pedagogických důvodů se vrhy dělí podle počátečních podmínek na speciální případy. 14. 10. 2015

Vrh svislý I Počáteční podmínky: = (0, 0, -g) = (x0, y0, z0), zpravidla volíme x0= y0 = 0 = (0, 0, vz0) Smysl má soustředit se jen na svislou osu z : vz(t) = vz0 – g t z(t) = z0 + vz0 t – g t2/2 14. 10. 2015

Vrh svislý II Speciální případ je volný pád, je-li vz0 = 0. Častý případ je vrh vzhůru : vz0 > 0, z0 = 0. Rychlost se zmenšuje , až dosáhne nuly v čase tm = vz0/g v horní úvrati z(tm) = v2z0/2g Potom těleso padá a rychlost je záporná. Na zem dopadne v čase tn, který je řešením rovnice z(tn) = tnvz0 –gt2n /2 = 0 => tn = 2vz0/g = 2tm. Rychlost dopadu v(tn) = – vz0. 14. 10. 2015

*Vrh vodorovný I Počáteční podmínky ve vhodné s. soustavě: = (0, 0, -g) = (x0, y0, z0), zpravidla volíme x0= y0 = 0 = (vx0, 0, 0) Pohyb je nyní nutno popsat ve dvou osách. Ve směru svislém se jedná o volný pád: vz(t) = – g t z(t) = z0 – gt2 /2 14. 10. 2015

*Vrh vodorovný II Ve směru vodorovném o pohyb rovnoměrný. Rychlost je konstantní protože zrychlení má nenulovou jen svislou složku: vx(t) = vx0 x(t) = x0 + vx0 t Pohyb (v obou osách) je zpravidla současně ukončen dopadem hmotného bodu na zem. 14. 10. 2015

*Vrh šikmý I Souřadnou soustavu zachováme. Poč. podmínky: = (0, 0, -g) = (x0, y0, z0), zpravidla volíme x0= y0 = 0 = (vx0, 0, vz0) Počáteční rychlosti jsou spolu vázány: vx0 = v0 cos() vz0 = v0 sin() Těleso je tedy vrženo počáteční rychlostí v0 pod elevačním úhlem  s vodorovnou rovinou. 14. 10. 2015

*Vrh šikmý II Pohyb je opět nutno popsat ve dvou osách. Ve svislé jde o svislý vrh: vz(t) = vz0 – g t = v0 sin() – g t z(t) = z0 + v0 sin() t – g t2 /2 Ve vodorovné o rovnoměrný pohyb vx(t) = vx0 = v0 cos() x(t) = x0 + v0 cos() t 14. 10. 2015

*Vrh šikmý III Pohyb je opět ukončen dopadem na zem. Kdy k němu dojde je dáno počátečními podmínkami. Například pohyb zem-zem z0 = 0 , zk = 0 : z(tk) = v0 sin() t – g t2 /2 = (v0 sin() – g/2 t) t =0 tk1 = 0 … počátek pohybu tk2 = 2v0 sin() /g … konec pohybu Dolet ve vodorovné rovině : x (tk2) = x0 + 2v20 sin()cos() 14. 10. 2015

*Vrh šikmý IV Horní úvrať (maximum výšky) : vz(tm) = vz(t) = v0 sin() – g tm = 0 tm = v0 sin()/ g Dochází k ní v čase poloviny celkového letu xm(t) = x0 + v20 sin()cos() zm(t) = v20 sin2()/2g 14. 10. 2015

Úvod do dynamiky Mechanika by byla neúplná, kdyby se nezabývala, důvody proč se tělesa dávají do pohybu, zrychlují, zpomalují nebo se zakřivuje jejich dráha. Pohybují-li se tělesa s nenulovým zrychlením, musí na ně působit nenulová výslednice sil. Dojít k tomuto jednoduchému závěru bylo obtížné, protože síly, jako například tření, nemusí být patrné a navíc některé tzv. dalekodosahové sily působí na dálku bez přímého kontaktu těles. 14. 10. 2015

Hybnost Pohybový stav hmotného bodu lze popsat vektorem hybnosti definovaným jako: Význam hybnosti spočívá ve skutečnosti, že se zachovává, když je výslednice sil působících na hmotný bod nulová a mění se, když nulová není. Taková situace může nastat v důsledku interakce s jinými hmotnými body nebo se silovými poli. 14. 10. 2015

Newtonovy zákony Isaac Newton (1642-1727) geniálně shrnul poznatky klasické dynamiky do tří zákonů: Zákonu setrvačnosti Zákonu síly Zákonu akce a reakce Upřesnění těchto zákonů je nutné až za hranicemi klasické mechaniky, při vysokých rychlostech a v mikrosvětě . 14. 10. 2015

Zákon setrvačnosti Nepůsobí-li na hmotný bod síla, pohybuje se rovnoměrně přímočaře nebo je v klidu. Přesněji: Je-li síla působící na hmotný bod nulová, je jeho hybnost konstantní. Silou se zde a dále obecně rozumí výslednice všech působících sil. V této formulaci jsou zahrnuty i speciální pohyby, kde se mění hmotnost, jako raketový. 14. 10. 2015

Zákon síly I Síla působící na hmotný bod je rovna časové změně jeho hybnosti. Za předpokladu, že hmotnost zůstává konstantní, platí formulace jednodušší : Jednotkou síly je 1 newton : N = kg m s-2 14. 10. 2015

Zákon síly II Předchozí vztahy jsou vektorové. Platí tedy i v příslušných složkách. Například: Nenulová druhá složka síly je rovna změně druhé složky hybnosti v čase. Je-li třetí složka síly nulová, je třetí složka hybnosti konstantní, atd. 14. 10. 2015

Zákon akce a reakce Působí-li těleso 1 na těleso 2 silou , působí i těleso 2 na těleso 1 silou . Obě síly jsou stejně velké, ale opačně orientované: . Každá působí na jiné těleso a proto se tyto síly spolu nedají obecně složit. Složit se dají jen když je mezi tělesy tzv. vazba, Tedy jsou spojena. Potom je účinek sil nulový. 14. 10. 2015

Časový účinek síly - impuls Působí-li konstantní síla, dostáváme integrací 2. Newtonova zákona vztah : Změna hybnosti se rovná impulsu síly. Je tedy důležité jak dlouho síla působí. Vztah platí samozřejmě opět i ve složkách. 14. 10. 2015

Dráhový účinek síly – práce I Pro jednoduchost předpokládejme konstantní sílu a hmotnost a pohyb v jednom rozměru (po jedné přímce = ose x). V důsledku působení síly se stav hmotného bodu změní (t1, x1, v1) -> (t2, x2, v2). Použijeme vztahu pro souřadnici v čase t : 14. 10. 2015

*Dráhový účinek síly - práce II V čase t2 tedy platí: Nyní dosadíme za zrychlení a rozdíl časů : a = F/m (t2 – t1) = (v2 – v1)/a = (v2 – v1)m/F Po úpravě : 14. 10. 2015

Dráhový účinek síly – práce III Tedy : A = F x = v22 m/2 – v21 m/2 = Ek  A je práce, kterou vykoná síla F na dráze x mv2 /2 = Ek je kinetická (pohybová) energie Obě veličiny mají rozměr energie a v SI jednotku 1 joule : J = Nm = kg m2 s-2 Obecně se musí uvažovat průmět síly do směru pohybu. Práce je tedy skalární součin : 14. 10. 2015

** Dráhový účinek síly I Uvažujme opět jednorozměrný případ působení konstantní síly na kompaktní hmotný bod. V obecnějším případě bychom ztotožnili osu x se směrem posunu a uvažovali pouze složku síly do tohoto směru. Použili jsme: Lze ukázat: 14. 10. 2015

Výkon působící síly Často je důležité, za jakou dobu došlo k vykonání určité práce. To charakterizujeme výkonem, který chápeme jako rychlost konání práce a definujeme analogicky jako ‘klasickou’ rychlost : Průměrný výkon : <P> = A/t Okamžitý výkon : P = dA/dt Jednotkou výkonu v SI je 1 watt W = Js-1 14. 10. 2015

Skalární součin Ať Definice I (ve složkách) Definice II Skalární součin je součin velikosti jednoho vektoru krát průmět velikosti vektoru druhého do jeho směru. ^

Dostředivé zrychlení při rovnoměrném pohybu po kružnici Průvodič určitého bodu oběhne za jednu periodu T kružnici o poloměru r. Když umístíme všech vektorů rychlosti do jednoho bodu, oběhnou koncové body kružnici o poloměru v. Můžeme tedy uvažovat jednoduchou analogii: ^