PYTHAGOROVA VĚTA Pythagorova Pythagorova věta a věta k ní obrácená.

Slides:



Advertisements
Podobné prezentace
Pythagorova věta a její odvození
Advertisements

POZNÁMKY ve formátu PDF
PYTHAGOROVA VĚTA Věta k ní obrácená.
Pythagorova věta Mgr. Dalibor Kudela
Matematika Trojúhelník.
Goniometrické funkce Řešení pravoúhlého trojúhelníku
Trojúhelník – II.část Mgr. Dalibor Kudela
EUKLIDOVY VĚTY A PYTHAGOROVA VĚTA
Matematika – 8.ročník Pythagorova věta
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G
NÁZEV ŠKOLY: Základní škola Nový Jičín, Komenského 66, p. o
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: , ; fax:
Vytvořila: Pavla Monsportová 2.B
PYTHAGOROVA VĚTA příklady
Pythagorova věta užití v prostoru
Pravoúhlý trojúhelník
Základní škola Ostrava – Hrabová Microsoft Office PowerPoint 2003
PRAVOÚHLÝ TROJÚHELNÍK
VLASTNOSTI TROJÚHELNÍKŮ
VY_42_INOVACE_109_PYTHAGOROVA VĚTA Jméno autora VMM. Lačná Datum vytvoření VMříjen 2011 Ročník použití VM8. ročník Vzdělávací oblast/obormatematika Anotace.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:8. ročník – Matematika a její aplikace – Matematika – Pythagorova věta autor.
Pythagorova věta Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Pythagorova věta.
Tento digit á ln í učebn í materi á l (DUM) vznikl na z á kladě ře š en í projektu OPVK, registračn í č í slo CZ.1.07/1.5.00/ s n á zvem „ Výuka.
Goniometrické funkce Kotangens ostrého úhlu
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
* Pythagorova věta Matematika – 8. ročník *
THALETOVA VĚTA.
Pythagorova věta 8. ročník
Základní škola a mateřská škola T. G. Masaryka Milovice, Školská 112, Milovice projekt v rámci Operačního programu VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST.
Metodické pokyny Materiál je určen pro 4. ročník 6letého a 2. ročník 4letého studia. Výklad slouží k odvození vět, které platí pro pravoúhlý trojúhelník.
Pythagorova věta – historie
Pythagorova věta.
Opakování Víš, co je to druhá mocnina ? Je to součin dvou sobě rovných činitelů. a 2 = a.a.
Autor: Mgr. Jana Pavlůsková Datum: květen 2012 Ročník: 6. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
V PRAVOÚHLÉM TROJÚHELNÍKU
* Thaletova věta Matematika – 8. ročník *
Výukový materiál zpracován v rámci projektu EU peníze školám
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
PRAVOÚHLÝ TROJÚHELNÍK V ROVINNÝCH GEOMETRICKÝCH OBRAZCÍCH
Pythagorova věta Pythagoras 570 př.n.l. – 510 př.n.l.
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Pravoúhlý trojúhelník (procvičování)
Pythagorova věta Mgr. Petra Toboříková Vyšší odborná škola zdravotnická a Střední zdravotnická škola, Hradec Králové, Komenského 234.
Pravoúhlý trojúhelník sekunda - osmileté studium Mgr. Štěpánka Baierlová Gymnázium Sušice Pythagorova věta.
Pythagorova VĚTA. PYTHAGORAS (6. století před naším letopočtem) Πυθαγορασ (Pí & ypsílon & théta & alfa & gamma & omíkron & ró & alfa & sígma)
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Číslo projektu:CZ.1.07/1.4.00/ Název DUM:TROJÚHELNÍK-PYTHAGOROVA.
PYTHAGORAS ŘECKÝ MATEMATIK PYTHAGORŮV ŽIVOT Pythagoras ze Samu, okolo 570 př. n. l. ostrov Samos – po 510 př. n. l. 570 př. n. l.Samos510 př. n. l. o.
PYTHAGOROVA VĚTA Věta k ní obrácená
Matematika pro 8. ročník Hranoly – příklady – 1.
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha - východ
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Název: VY_32_INOVACE_MA_8A_12I Škola:
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
Pythagorova věta 7. třída Lenka Betlachová.
Název školy: ZŠ a MŠ Březno
Pythagorova věta – popisuje vztahy stran v pravoúhlém trojúhelníku
Pravoúhlý trojúhelník, Pythagorova věta, přepona, odvěsna
PYTHAGOROVA VĚTA Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín
METODICKÝ LIST PRO ZŠ Pro zpracování vzdělávacích materiálů (VM)v rámci projektu EU peníze školám Operační program Vzdělávání pro konkurenceschopnost   
PYTHAGOROVA VĚTA Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: TROJÚHELNÍK-testy
Název projektu: Učíme obrazem Šablona: III/2
PYTHAGOROVA VĚTA Věta k ní obrácená
Trojúhelník 1 trojúhelník ABC určují tři různé body A, B, C, které neleží v přímce.
Pythagorova věta.
Transkript prezentace:

PYTHAGOROVA VĚTA Pythagorova Pythagorova věta a věta k ní obrácená

PRAVOUHLÝ TROJÚHELNÍK vlastnosti STRANY: -přepona=najdelší strana, leží vždy proti pravému úhlu -odvěsny jsou navzájem kolmé strany ÚHLY: -jeden vnitřní úhel je vždy pravý -zbylé 2 úhly jsou ostré; jejich součet je vždy 90°

PRAVOÚHLÝ TROJÚHELNÍK určení V každém pravoúhlém trojúhelníku je vždy jeden úhel pravý. Proto se pravoúhlý trojúhelník určuje dalšími už jen dvěma prvky: a) dvěma stranami b) stranou a jedním ostrým úhlem

PYTHAGOROVA VĚTA Obsah čtverce nad přeponou pravoúhlého trojúhelníka se rovná součtu obsahů čtverců nad oběma odvěsnami. Vzorec: c²=a²+b²

Použití PYTHAGOROVÉ VĚTY na výpočet délky přepony pravoúhlého trojúhelníka pomocí délek jeho odvěsen na výpočet délky jedné odvěsny pravoúhlého trojúhelníka pomocí délky přepony a druhé odvěsny

1. příklad Jak dlouhá je přepona pravoúhlého trojúhelníka, jehož odvěsny mají délky 56 m a 33 m ? Řešení: a=56 m b=33 m c=? m Výpočet: Odpověď: Přepona pravoúhlého trojúhelníka je dlouhá 65 m.

2. příklad Vypočítej výšku rovnostranného trojúhelníka, jehož strana a= 6 cm. Řešení: a=6 cm v=? cm Výpočet: Odpověď: Výška rovnostranného trojúhelníka je 5,2 cm.

Obrácená PYTHAGOROVA věta Jestlie pro velikost stran a, b, c trojúhelníka platí vztah c²=a²+b² potom je tento trojúhelník pravoúhlý s přeponou c a odvěsnami a, b.  ABC je pravoúhlý

PYTAGORAS Historická poznámka Pytagoras ze Samu byl řécký matematik, který žil v r před n.l. Studoval matematiku a astronomii v Egyptě a v Babylonu. Žil v jižní Itálii a na Sicílii, kde založil pythagorejskou školu. Pythagorejci objevili např. známou větu, že součet vnitřních úhlů v trojúhelníku je 180°. Pythagorova věta byla známa už dlouho před Pythagorem, např. v Číně 2200 r. před n.l. a v Indii 800 r. před n.l. Pythagorejcům se přisuzuje zřejmě proto, že ji dokázali.

Vytýčení pravého úhlau ve Vytýčení pravého úhlau ve Starém Egyptě Na napnutém provazu uvázali 13 uzlů tak,aby vzdálenosti mezi uzly byly stejné. Provaz napli tak, že uzol 1 a 13 upevnili na stejném místě a uzly 4 a 8 též upevnili. Potom úhol 148 je pravý.

AUTOR: Mgr. Mária Hinďošová