Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Pojem účinného průřezu 1)Základní pojmy – zavedení účinného průřezu 2) Diferenciální, integrální účinný průřez, totální účinný průřez 3) Geometrická interpretace.

Podobné prezentace


Prezentace na téma: "Pojem účinného průřezu 1)Základní pojmy – zavedení účinného průřezu 2) Diferenciální, integrální účinný průřez, totální účinný průřez 3) Geometrická interpretace."— Transkript prezentace:

1 Pojem účinného průřezu 1)Základní pojmy – zavedení účinného průřezu 2) Diferenciální, integrální účinný průřez, totální účinný průřez 3) Geometrická interpretace účinného průřezu 4) Makroskopický účinný průřez, střední volná dráha. 5) Typické hodnoty účinných průřezů pro různé procesy

2 Zavedení účinného průřezu. Minule jsme odvodili závislost mezi úhlem Ruthefordova rozptylu a parametrem srážky (rozptylujeme částice  ): ………………… (1) Čím menší parametr srážky b, tím větší úhel rozptylu. Parametr srážky nelze přímo měřit a je třeba definovat veličinu, která bude přímo měřitelná. Pro kvantitativní popis rozptylu zavádíme účinný průřez rozptylu  =R/n s N j [m 2 ]: R –počet reakcí, n S –počet nalétávajících jader na jednotkovou plochu, N j –počet jader terče Odvození Rutherfordova vzorce pro rozptyl: Vztah mezi parametrem srážky b a úhlem rozptylu  částice s parametrem srážky menším a rovným b (míří do plochy  b 2 ) se rozptýlí o úhel větší než hodnota b daná vztahem (1) pro příslušnou hodnotu b. Platí tak:  (  b ) =  b 2 ……………….……....………. (2) ( rozměr  je tedy m 2, barn = m 2 ) Uvažujme tenkou folii (účinné průřezy sousedních jader se nepřekrývají a neprobíhá vícenásobný rozptyl) tloušťky L s n j atomy v jednotce objemu. Svazek s počtem N S částic  dopadá na plochu S S. (Počet částic svazku na jednotku času a plochy – luminosita – u současných urychlovačů až m -2 s -1 ). Pravděpodobnost reakce:

3 Zlomek f(  b ) dopadajících částic  rozptýlených o úhel větší než b je: Dosadíme za b ze vztahu (1): Schéma Ruthefordova experimentu Úhlové rozdělení rozptýlených částic Počet terčových jader, na které dopadají částice , je: N j = n j LS S. Suma účinných průřezů  rozptylu o úhel b a více je:  (  b ) = n j LS S . Připomínka vztahu (1) Připomínka vztahu (2)  (  b ) =  b 2 ………………… (3)

4 Pro plochu detektoru ve vzdálenosti r od terče platí: Počet N( ) částic  dopadajících do detektoru na jednotku plochy je: Tomuto vztahu se říká Ruthefordův vzorec pro rozptyl. Při skutečném experimentu měří detektor částice  rozptýlené v úhlu od do +d. Zlomek dopadajících částic  do tohoto rozmezí úhlů je: Připomínka obrázků Připomínka vztahu (3) … (4)

5 Diferenciální a totální účinný průřez: Je výhodné znát počet rozptýlených částic do určitého úhlu nezávisle na vzdálenosti detektoru od terče. Určujeme počet částic letících do jednotkového prostorového úhlu Ω namísto jednotkové plochy S. Zavádíme diferenciální účinný průřez, který udává pravděpodobnost, že jedna dopadající částice N S = 1 vyvolá na jednom terčíkovém jádře n j L = 1 rozptyl do úhlu do jednotkového objemového úhlu: Protože dostaneme pak Ruthefordův vzorec pro rozptyl ve tvaru: Definujme totální (celkový) účinný průřez: Pro osově symetrické případy se budou částice rozptylovat pro jistý úhel stejně nezávisle na azimutálním úhlu . Můžeme tedy uvažovat všechny částice rozptýlené do oblasti úhlů mezi a +d. Příslušný účinný průřez je: Neboť platí: Připomínka vztahu (4)

6 Různé druhy diferenciálních účinných průřezů: úhlové spektrálníspektrálně úhlový dvojný či trojný diferenciální účinný průřez Integrální účinné průřezy: přes energii, přes úhly Transformace účinného průřezu z těžišťové do laboratorní soustavy: Ruthefordův vzorec pro rozptyl jsme odvodili za předpokladu, že hmotnost terče m 2  . V těžišťové soustavě platí i v případě, když tato podmínka neplatí. Za E KIN musíme dosadit kinetickou energii relativního pohybu částic E KIN = (1/2)  v 1 2. Získané diferenciální účinné průřezy pak musíme transformovat do laboratorní soustavy: Porovnáme počty částic do navzájem si odpovídajících elementů prostorového úhlu v obou soustavách: Pro pružný rozptyl dostaneme (využijeme již odvozený vztah: kde  = m 1 /m 2 ) Provedeme derivaci podle a dostaneme: Pro transformaci diferenciálních účinných průřezů pak máme: Neboť platí:

7 Geometrická interpretace účinného průřezu: Určeme diferenciální účinný průřez pro pružný rozptyl na tuhé kouli rozměru R. Platí: neboť V našem případě platí pro úhly: 2  + =    =  /2 - /2  sin  = cos ( /2) Parametr srážky: b=R  sin  = R  cos( /2)  (db/d ) = (R/2)sin( /2) Pak dostáváme ( sin = 2sin( /2)cos( /2) ): Totální účinný průřez je: Odpovídá názorné představě, že totální účinný průřez je efektivní plochou (průřezem) koule, na které probíhá rozptyl. Účinný průřez – ploška nastavena dopadajícím částicím → pravděpodobnost reakce roste s σ. Hodnota totálního účinného průřezu reakcí s jádrem bude přibližně rovna průřezu jádra – tedy  ~ m 2 = 1 barn (předpoklad blízkosti účinného průřezu geometrickému). Ve skutečnosti σ závisí na interakci a energii svazku → nemusí se rovnat geometrického průřezu.

8 Makroskopické veličiny: Průchod částic materiálem: interagující částice zmizí ze svazku (N 0 – počet dopadajících částic): ln N – ln N0 = – n j σx Počet nedotčených částic N klesá exponenciálně s tloušťkou x: Počet interagujících částic: Pro x→0 : N 0 – N  N 0 – N 0 (1-n j  x)  N 0 n j  x a tedy: absorpční koeficient  = n j  - makroskopický účinný průřez Střední volná dráha l = je střední vzdálenost kterou urazí částice v materiálu před interakcí. Kvantová fyzika  všechny měřené makroskopické veličiny , l jsou středními hodnotami (l je statistická veličina i v klasické fyzice).

9 Velikost účinných průřez: Velice silná závislost účinných průřezů na energii nalétávající částice a povaze interakce. Hodnoty se pohybují ve velmi širokém rozmezí:  m 2 ÷  m 2 →  barn ÷  10 4 barn Silná interakce (vzájemná interakce nukleonů a dalších hadronů):  m 2 ÷  m 2 →  0.01 barn ÷  10 4 barn Elektromagnetická interakce (reakce nabitých leptonů nebo fotonů):  m 2 ÷  m 2 →  0.1 μbarn ÷  10 mbarn Slabá interakce (reakce neutrin):  m 2 = barn Účinné průřezy různých reakcí neutronů s jádrem zlata


Stáhnout ppt "Pojem účinného průřezu 1)Základní pojmy – zavedení účinného průřezu 2) Diferenciální, integrální účinný průřez, totální účinný průřez 3) Geometrická interpretace."

Podobné prezentace


Reklamy Google