Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Statistika Statistický soubor, jednotka, znak.. Statistický soubor a znak Pro statistiku je charakteristické zkoumání jevů na dostatečně rozsáhlém souboru.

Podobné prezentace


Prezentace na téma: "Statistika Statistický soubor, jednotka, znak.. Statistický soubor a znak Pro statistiku je charakteristické zkoumání jevů na dostatečně rozsáhlém souboru."— Transkript prezentace:

1 Statistika Statistický soubor, jednotka, znak.

2 Statistický soubor a znak Pro statistiku je charakteristické zkoumání jevů na dostatečně rozsáhlém souboru případů a hledá ty vlastnosti jevů, které se projevují v souboru případů. Výchozím pojmem je statistický soubor a jeho prvky se nazývají statistické jednotky. Statistické jednotky vyšetřujeme z hlediska zvoleného znaku. Znak, jehož hodnoty se liší číselnou velikostí se nazývá kvantitativní znak. Znak, jehož hodnoty se liší kvalitou, se nazývá kvalitativní znak.

3 Rozdělení četností a jeho grafické znázornění

4 Příklad 1. Při 20 ti hodech kostkou padla čísla 2, 4, 5, 6, 5, 2, 5, 2, 6, 4, 5, 2, 6, 4, 5, 5, 3, 4, 2, 6 Sestavte četnosti a relativní četnosti do tabulky. Mimo matematiku se relativní četnosti udávají v procentech ,000,250,050,20,30,2

5 Příklad 2 Ve vzorku 500 diváků je znakem sledovaný televizní program v neděli večer ČT1, ČT2, TV NOVA, PRIMA ProgramČT 1ČT 2TV NOVAPRIMA Četnost Relativní četnost 0,260,160,360,22

6 Sloupkový diagram neboli histogram

7 Kruhový diagram

8 Spojnicový diagram neboli polygon

9 Charakteristiky polohy a variability znak v dalších úvahách bude znamenat vždy kvantitativní znak nejčastěji užívanou charakteristikou polohy znaku x je aritmetický průměr tj. součet hodnot znaku, zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Počítáme-li aritmetický průměr z tabulky rozdělení četností, musíme ovšem každou hodnotu násobit její četností. Hovoříme pak o váženém aritmetickém průměru.

10 Aritmetický průměr V souboru 200 lidí se zkoumala průměrná výška postavy. Údaje jsou zachyceny v první tabulce. Druhá tabulka nám ukazuje hodnoty téhož intervalu zaokrouhleného na střed. Výška v cm četnost Výška v cm četnost

11 Aritmetický průměr Podle údajů z předchozího příkladu, vypočítejte průměrnou výšku postavy. Výpočty jsou provedeny s hodnotami zaokrouhlenými na střed intervalů.

12 Aritmetický průměr Součiny hodnot znaku a jeho četností jsou obvykle velká čísla, což je pro počítání s nimi nepraktické. Výpočty si usnadňujeme použitím vztahu x = a + bu, který platí i pro průměry. Při praktickém počítání volíme za a nejmenší hodnotu znaku x, za b krok hodnot znaku x. V našem případě a =160,b = 5 tj. x = u, kde u = 0,1,2,…6. Určíme ještě jednou průměrnou výšku postavy s užitím pomocného znaku u a dosazením do vzorce

13

14 Aritmetický průměr Máme čtyři třídy, označené A,B,C,D, počty žáků a průměrné známky z matematiky.Určete průměrnou známku z matematiky ve všech třídách. třídaABCD Průměrná známka z matematiky 2,211,822,332,11 Počet žáků

15 Aritmetický průměr Aritmetický průměr volíme za charakteristiku polohy znaku z těchto důvodů: Každá zjištěná hodnota znaku se skládá z vlivu dvou položek. První je charakteristická pro celý soubor(jde o průměr z matematiky) a podává o něm informaci. Druhá představuje individuální odchylku a má náhodný charakter. Utvořením průměru první složka vynikne, protože individuální odchylky mají tendenci se vyrušit. Aritmetický průměr je dobré volit tam, kde individuální odchylky jsou nahodilé.

16 Geometrický průměr Tam, kde jsou individuální odchylky systematické například v časových řadách, kde data vyjadřují určitý trend, (vývoj v čase) je zajímavější ukazatel průměrný přírůstek (úbytek) nebo průměrné tempo růstu. Jednotlivá období, která sledujeme očíslujeme 0,1,2…,n. Jim odpovídající hodnoty znaků jsou x 0,,x 1,x 2 …,x n. Pak přírůstky za jednotlivá období označíme Průměrný přírůstek, je Průměrným tempem růstu je myšlen průměr podílů za dvě po sobě následující období, tedy podílů

17 Příklad k průměrnému přírůstku

18 Geometrický průměr Za průměr v předchozím příkladu volíme geometrický průměr Hodnoty růstu se obvykle udávají v procentech. Jsou-li např. v pěti po sobě jdoucích letech rovny hodnotám: pak je průměrné roční tempo růstu vyjádřeno 101,3; 108,5; 100,6; 104,2; 102,1

19 Geometrický průměr Příklad: V průběhu let proběhlo několikrát zdražení využívané služby. Poprvé na dvojnásobek, poté na trojnásobek a nakonec na čtyřnásobek. Jaké bylo celkové zdražení? Jaké bylo průměrné zdražení?

20 Geometrický průměr

21 Geometrický průměr

22 Další důležité pojmy Mod(x)= modus znaku x – hodnota x s největší četností Med(x)= medián znaku x – prostřední hodnota znaku, jsou-li hodnoty x 1,x 2,…x n uspořádány podle velikosti Med(x)=, je-li n liché Med(x)=, je-li n sudé např. máme-li hodnoty znaku x: 1,2,4,5,8 med(x) = tj. hodnota 4 jsou-li hodnoty znaku x: 1,2,5,7,9,10 med(x) = tj. sečteme třetí a čtvrtý člen a vydělíme dvěma tedy (5+7) : 2 = 6

23 Směrodatná odchylka Je-li charakteristikou polohy aritmetický průměr, pak charakteristikou variability je nejčastěji rozptyl. Rozptyl je definovaný jako průměr druhých mocnin odchylek od aritmetického průměru. Značíme symbolem Vzorec zní Druhá odmocnina rozptylu se nazývá směrodatná odchylka

24 Směrodatná odchylka Máme k dispozici tyto údaje jako výsledky měření: 3,05; 3,09; 3,11; 3,10; 3,03; 3,02; 3,05; 3,04 Vypočítejte průměr a směrodatnou odchylku. Průměr Rozptyl tj = 0,03


Stáhnout ppt "Statistika Statistický soubor, jednotka, znak.. Statistický soubor a znak Pro statistiku je charakteristické zkoumání jevů na dostatečně rozsáhlém souboru."

Podobné prezentace


Reklamy Google