Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Vzájemná poloha přímek daných parametrickým vyjádřením Mgr. Martin Krajíc 8.4.2014 matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily,

Podobné prezentace


Prezentace na téma: "Vzájemná poloha přímek daných parametrickým vyjádřením Mgr. Martin Krajíc 8.4.2014 matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily,"— Transkript prezentace:

1 Vzájemná poloha přímek daných parametrickým vyjádřením Mgr. Martin Krajíc matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily, Nad Špejcharem 574, příspěvková organizace Nad Špejcharem 574, Semily, Česká republika Registrační číslo projektu: CZ.1.07/1.5.00/ Název projektu: Moderní škola

2 Vzájemná poloha přímek vzájemná poloha dvou přímek v rovině různoběžné … jeden společný bod (průsečík) rovnoběžné – totožné … všechny body společné různé … žádný společný bod

3 Vzájemná poloha přímek P up QvqQvq přímky p, q jsou rovnoběžné různé, jestliže je vektor u násobkem vektoru v a jestliže bod Q neleží na přímce p P u Qv p = q přímky p, q jsou rovnoběžné totožné, jestliže je vektor u násobkem vektoru v a jestliže bod Q leží na přímce p

4 Vzájemná poloha přímek p Qvq P u přímky p, q jsou různoběžné, jestliže není vektor u násobkem vektoru v Průsečík přímek

5 Vzájemná poloha přímek Průsečík přímek: 1. sestavíme parametrické vyjádření obou přímek 2. z parametrických vyjádření obou přímek sestavíme soustavu a vypočteme hodnotu jednoho z parametrů 3. dosadíme hodnotu parametru zpět do parametrického vyjádření jedné z přímek a získané x, y nám určí souřadnice průsečíku

6 Vzájemná poloha přímek Př: Určete vzájemnou polohu p (P, u), q (Q, v), u různoběžných určete souřadnice průsečíku. a) P [2, 3], u = (1, -2), Q [1, 0], v = (-1, 2) zjišťujeme, zda existuje číslo k takové, aby v = ku v = ku (-1, 2) = k (1, -2) (-1, 2) = (1k, -2k) dostaneme dvě rovnice -1 = 1k, 2 = -2k po úpravě z obou dostáváme stejné k = -1 přímky jsou rovnoběžné

7 Vzájemná poloha přímek musíme zjistit, zda bod Q leží na přímce p sestavíme parametrické vyjádření přímky p x = 2 + 1t y = 3 – 2t, t ɛ R dosazením souřadnic bodu Q za x, y do parametrického vyjádření přímky zjistíme, zda bod Q leží na přímce p 1 = 2 + 1tt = -1 0 = 3 – 2tt = 1,5 přímky jsou rovnoběžné různé Různé parametry t, bod Q neleží na přímce p.

8 Vzájemná poloha přímek b) P [6, -1], u = (3, -5), Q [9, -6], v = (-9, 15) zjišťujeme, zda existuje číslo k takové, aby v = ku v = ku (-9, 15) = k (3, -5) (-9, 15) = (3k, -5k) dostaneme dvě rovnice -9 = 3k, 15 = -5k po úpravě z obou dostáváme stejné k = -3 přímky jsou rovnoběžné

9 Vzájemná poloha přímek musíme zjistit, zda bod Q leží na přímce p sestavíme parametrické vyjádření přímky p x = 6 + 3t y = -1 – 5t, t ɛ R dosazením souřadnic bodu Q za x, y do parametrického vyjádření přímky zjistíme, zda bod Q leží na přímce p 9 = 6 + 3tt = 1 -6 = -1 – 5tt = 1 přímky jsou rovnoběžné totožné Stejné parametry t, bod Q leží na přímce p.

10 Vzájemná poloha přímek c) P [3, 2], u = (2, -1), Q [-1, 1], v = (1, 1) zjišťujeme, zda existuje číslo k takové, aby v = ku v = ku (1, 1) = k (2, -1) (1, 1) = (2k, -1k) dostaneme dvě rovnice 1 = 2k, 1 = -1k po úpravě dostáváme různá k (z první k = 0,5 a z druhé k = -1) přímky jsou různoběžné

11 Vzájemná poloha přímek sestavíme parametrická vyjádření přímek p: x = 3 + 2tq: x = s y = 2 – 1t, t ɛ Ry = 1 + 1s, s ɛ R po dosazení za x, y do parametrického vyjádření přímky p z parametrického vyjádření přímky q dostaneme s = 3 + 2t 1 + 1s = 2 – 1t po vyřešení soustavy dostaneme t = -1, s = 2 dosadíme za t do parametrického vyjádření přímky p x = 3 + 2t x = 3 + 2(-1) x = 1 y = 2 – 1t y = 2 – 1(-1) y = 3 průsečík přímek má souřadnice X[1, 3]

12 Vzájemná poloha přímek – samostatná práce Řešte příklady a na závěr doplňte citát (využijte písmen u správných řešení). Konfucius: „Žádný inteligentní panovník nepřišel. Nikdo v království mne nechce za učitele. Nastal ……… zemřít.“ Př: Určete vzájemnou polohu p (P, u), q (Q, v), u různoběžných určete souřadnice průsečíku. 1. P [1, 5], u = (1, 2), Q [4, 2], v = (1, -1) a) D = rovnoběžné různéb) Č = různoběžné, X [1, 5] 2. P [4, 1], u = (3, 1), Q [- ½, -1], v = (6, 2) a) A = rovnoběžné různéb) E = různoběžné, X [-3, 4] 3. P [1, 1], u = (1, 1), Q [4, -2], v = (2, 2) a) N = rovnoběžné různéb) S = různoběžné totožné

13 Vzájemná poloha přímek – správné řešení Konfucius: „Žádný inteligentní panovník nepřišel. Nikdo v království mne nechce za učitele. Nastal ……. zemřít.“ ČAS

14 Vzájemná poloha přímek – použitá literatura Použitá literatura: KOČANDRLE, Milan a Leo BOČEK. Matematika pro gymnázia: Analytická geometrie. Praha: Prometheus, 2009 SVOBODA, Martin. [online]. [cit ].


Stáhnout ppt "Vzájemná poloha přímek daných parametrickým vyjádřením Mgr. Martin Krajíc 8.4.2014 matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily,"

Podobné prezentace


Reklamy Google