Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Vzájemná poloha přímek daných obecnou rovnicí Mgr. Martin Krajíc 14.4.2014 matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily, Nad.

Podobné prezentace


Prezentace na téma: "Vzájemná poloha přímek daných obecnou rovnicí Mgr. Martin Krajíc 14.4.2014 matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily, Nad."— Transkript prezentace:

1 Vzájemná poloha přímek daných obecnou rovnicí Mgr. Martin Krajíc matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily, Nad Špejcharem 574, příspěvková organizace Nad Špejcharem 574, Semily, Česká republika Registrační číslo projektu: CZ.1.07/1.5.00/ Název projektu: Moderní škola

2 Vzájemná poloha přímek vzájemná poloha dvou přímek v rovině různoběžné … jeden společný bod (průsečík) rovnoběžné – totožné … všechny body společné různé … žádný společný bod

3 Vzájemná poloha přímek dány obecné rovnice přímek p, q: p: ax + by + c = 0 q: a´x + b´y + c´ = 0 vypočteme podíly odpovídajících si koeficientů přímek: k 1 = k 2 = k 3 =  přímky jsou rovnoběžné totožné: k 1 = k 2 = k 3  přímky jsou rovnoběžné různé: k 1 = k 2 ≠ k 3  přímky jsou různoběžné: k 1 ≠ k 2

4 Vzájemná poloha přímek Průsečík přímek: 1. z obecných rovnic obou přímek sestavíme soustavu dvou rovnic o dvou neznámých 2. získané hodnoty x, y nám určují souřadnice průsečíku

5 Vzájemná poloha přímek Př: Určete vzájemnou polohu přímek p, q, u různoběžných určete souřadnice průsečíku. a) p: -6x + 14y – 4 = 0 q: 3x – 7y + 2 = 0 k 1 = -6 : 3 = -2 k 2 = 14 : (-7) = -2 k 3 = -4 : 2 = -2 k 1 = k 2 = k 3 přímky jsou rovnoběžné totožné

6 Vzájemná poloha přímek b) p: 6x – 21y – 9 = 0 q: 4x – 14y + 6 = 0 k 1 = 6 : 4 = 1,5 k 2 = -21 : (-14) = 1,5 k 3 = -9 : 6 = -1,5 k 1 = k 2 ≠ k 3 přímky jsou rovnoběžné různé

7 Vzájemná poloha přímek c) p: x + y – 5 = 0 q: 2x – 3y + 5 = 0 k 1 = 1 : 2 = 0,5 k 2 = 1 : (-3) = -1/3 k 3 = -5 : 5 = -1 k 1 ≠ k 2 přímky jsou různoběžné Průsečík: x + y – 5 = 0 /.3 2x – 3y + 5 = 0 3x + 3y – 15 = 0 2x – 3y + 5 = 0 5x – 10 = 0 x = 2 x + y – 5 = y – 5 = 0 y = 3 Souřadnice průsečíku: P [2, 3]

8 Vzájemná poloha přímek Př: Určete číslo d tak, aby přímky p, q byly rovnoběžné. a) p: (1 + d)x – (2 – 3d)y + d = 0 q: x + 8y – 1 = 0 k 1 = k 2 = k 3 =  přímky mají být rovnoběžnék 1 = k 2  po dosazení dostáváme: = / d = -(2 – 3d) d = -2  dopočteme k 1,k 2,k 3 : k 1 = -1 k 2 = -1k 3 = 2 k 1 = k 2 ≠ k 3 pro d = -2 jsou přímky rovnoběžné různé

9 Vzájemná poloha přímek b) p: (3 – 2d)x + (d – 4)y + 1 = 0 q: -2x + y – 1 = 0 k 1 = k 2 = k 3 =  přímky mají být rovnoběžnék 1 = k 2  po dosazení dostáváme: = d - 4 /.2 2d – 3 = 2d – 8 0 = -5 rovnice nemá řešení neexistuje žádné d, pro které by byly přímky rovnoběžné

10 Vzájemná poloha přímek Př: Určete číslo d tak, aby bod M [1, 5] ležel na přímce q. q: (1 + d)x + (1 – d)y + 2d = 0 za x, y dosadíme do rovnice přímky souřadnice bodu M (1 + d).1 + (1 – d).5 + 2d = d + 5 – 5d + 2d = 0 -2d = -6 d = 3 pro d = 3 platí M ɛ q

11 Vzájemná poloha přímek Řešte příklady a na závěr doplňte citát (využijte písmen u správných řešení). Gaius Titus Petronius: „Brzy poznáš, že tvůj ……. platil školné nadarmo.“ Př: Urči vzájemnou polohu přímek p, q, u různoběžných urči souřadnice průsečíku. 1. p: 2x – y + 1 = 0, q: 3x + 2 = 0 a) T = rovnoběžné totožné b) O = různoběžné 2. p: -x + y = 0, q: 2x – 2y = 0 a) T = rovnoběžné totožné b) Á = různoběžné 3. p: x + 2y + 1 = 0, q: 2x + y - 1 = 0 a) E = různoběžné b) T = rovnoběžné různé 4. p: 3x – y + 1 = 0, q: 6x – 2y + 1 = 0 a) A = různoběžné b) C = rovnoběžné různé

12 Vzájemná poloha přímek Gaius Titus Petronius: „Brzy poznáš, že tvůj ………... platil školné nadarmo.“ OTEC

13 Vzájemná poloha přímek Použitá literatura: KOČANDRLE, Milan a Leo BOČEK. Matematika pro gymnázia: Analytická geometrie. Praha: Prometheus, 2009 SVOBODA, Martin. [online]. [cit ].


Stáhnout ppt "Vzájemná poloha přímek daných obecnou rovnicí Mgr. Martin Krajíc 14.4.2014 matematika 3.ročník analytická geometrie Gymnázium Ivana Olbrachta Semily, Nad."

Podobné prezentace


Reklamy Google