Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Kovy ve vodách Např.: Šíření chemických látek v kontaminovaných půdách je limitováno chemismem půdní vody a sorpčními rovnováhami mezi půdní vodou a tuhou.

Podobné prezentace


Prezentace na téma: "Kovy ve vodách Např.: Šíření chemických látek v kontaminovaných půdách je limitováno chemismem půdní vody a sorpčními rovnováhami mezi půdní vodou a tuhou."— Transkript prezentace:

1 Kovy ve vodách Např.: Šíření chemických látek v kontaminovaných půdách je limitováno chemismem půdní vody a sorpčními rovnováhami mezi půdní vodou a tuhou fází. Zkondenzovaná atmosférická vlhkost – padající srážky zprostředkovávají přestup chemických látek z atmosféry apod. Studium chemických látek ve vodách má velký význam i z hlediska ostatních sfér prostředí (atmosféra, litosféra, pedosféra) Voda velmi často zprostředkovává transport látek a determinuje chemické procesy v sférách prostředí.

2 Kovy ve vodách Kovy – prvky mající snahu předávat valenční elektrony, tj. tvořit jednoatomové kationty. Prvky, které tuto vlastnost nemají jsou nekovy. Prvky ležící v periodické tabulce na hranici mezi kovy a nekovy a vykazující tedy některé vlastnosti kovů jsou označovány jako polokovy.

3 Kovy ve vodách Těžké kovy – kovy s měrnou hmotností (hustotou) > 5000 kg.m-3 Označení „těžké kovy“ obecně není synonymem termínu „toxické kovy“, který zahrnuje pouze kovy s toxickými vlastnostmi – Hg, Cd, Pb, Cr, Ni, Be apod. (Be je toxický, avšak nikoli těžký kov) Např. Fe a Mn jsou s ohledem na hustotu těžké kovy, nikoli však toxické (v koncentracích, v jakých se běžně vyskytují) Esenciální kovy – mající biologickou funkci. Jsou součástí biomasy organismů, byť mohou být ve vyšších koncentracích toxické – Ca, Mg, K, Na, Mn, Fe, Cu, Zn, Co, Mo, Ni, W Přirozený obsah kovů ve vodách (tzv. přírodní, resp. geogenní pozadí) je dán stykem s horninami a půdou – např. v okolí ložisek rud může být voda obohacována relativně vysokými koncentracemi kovů. Dalším přírodním zdrojem kovů ve vodách může být vulkanická činnost. Nejvýznamnější Antropogenní zdroje kovů ve vodách (tj. antropogenní znečištění vod kovy): Odpadní vody z těžby a zpracování rud, z hutí válcoven, povrchových úpraven kovů apod. Agrochemikálie Kalové deponie – tj. jejich vyluhování Kontakt se stavebními materiály, materiály potrubí apod. Možným zdrojem kontaminace vod je také atmosférická depozice, nicméně koncentrace kovů v atmosférických srážkách jsou zpravidla významně nižší oproti např. odpadním vodám.

4 Kovy ve vodách – formy výskytu Rozpuštěná forma Komplexy s anorganickými nebo organickými ligandy Jednoduché neasociované ionty – zpravidla málo zastoupeny Nerozpuštěná forma Kovy ve formě iontů nebo vysrážených koloidních částic hydroxidů, uhličitanů apod. adsorbované na tuhou fázi – na částice jílů sedimentů apod. Nerozpuštěná (vysrážená) forma tj. málo rozpustná sloučenina Kovy inkorporované do biomasy organismů Imobilizace (přechod do nerozp. forem) zvýšení pH (alkalizace) – srážení kovů jako hydratovaných oxidů oxidace – oxidované formy jsou zpravidla méně rozpustné (Fe) adsorpce Remobilizace (resp. mobilizace) snížení pH (acidifikace) - rozpouštění málo rozp. sloučenin kovů redukce komplexace – ligandy zabraňují vylučování málo rozp. sloučenin a mohou potlačovat adsorpci desorpce

5 Kovy ve vodách Požadavky na jakost vod z hlediska obsahu kovů Analytický postup, který je zaměřen na stanovení jednotlivých forem chemické látky – kovu se nazývá speciace

6 Kovy ve vodách – vápník, hořčík Přirozený původ: Rozklad hlinitokřemičitanů vápenatých a hořečnatých (anorit CaAl 2 Si 2 O 8, chlorit Mg 5 Al 2 Si 3 O 10 (OH) 8 ) Rozpouštění vápence CaCO 3, dolomitu CaCO 3.MgCO 3, sádrovce CaSO 4.2H 2 O apod. Větší obohacení vod Ca a Mg je limitováno obsahem rozpuštěného CO 2, který podstatně zvyšuje rozpustnost a zvětrávání uvedených minerálů Antropogenní zdroje: Průmyslové vody z provozů, kde se sloučeniny Ca a Mg (Ca(OH) 2, CaCO 3, MgCO 3 apod.) používají k neutralizaci kyselin Formy výskytu: V málo až středně mineralizovaných vodách převážně jako jednoduché ionty Ca2+, Mg2+ Ve vodách s vyšším obsahem hydrogenuhličitanů a síranů mohou tvořit iontové asociáty (komplexy): [CaCO 3 (aq)] o, [CaHCO 3 ] +, [CaSO 4 (aq)] o, [CaOH] + Průměrná koncentrace Ca ve vodách se pohybuje v desítkách mg.l -1. Hmotnostní poměr průměrného obsahu Ca : Mg je cca 5, látkový poměr Ca : Mg pak 3 (M Ca = 40, M Mg = 24,3) Málo rozpustné sloučeniny: CaCO 3 – v krystalické formě kalcit, podvojný uhličitan CaMg(CO 3 ) 2, CaSO 4 – anhydrit, CaSO 4.2H 2 O – sádrovec, CaF 2 apod. MgCO 3, hydratované hydroxid-uhličitany Mg 4 (CO 3 ) 3 (OH) 2.3H 2 O – hydromagnezit, Mg(OH) 2 apod.

7 Kovy ve vodách – hliník Přirozený původ: Rozklad jílových minerálů (anorit CaAl 2 Si 2 O 8, albit NaAlSi 3 O 8 ), kamencových břidlic Antropogenní zdroje: Odpadní vody z povrchové úpravy hliníku apod. Kyselá atmosférická depozice – snížení pH srážek v souvislosti s antropogenní činností je příčinou mobilizace hliníku v půdách a tedy vzrůstu koncentrace Al ve vodách. Formy výskytu: Aquakomplexy, hydroxokomplexy (asociované molekulami vody) Rozpuštěná forma hexaaquahlinitý kation [Al(H 2 O) 6 ] 3+ převažuje jen v kyselém prostředí. Při růstu pH vznikají hydroxokomplexy. Uvedené komplexy se nazývají mononukleární hydroxohlinitany Hydrolýza pokračuje polymeračními reakcemi – z mononukleárních vznikají polynukleární hydroxohlinitany (hydroxopolymery) různého složení a náboje

8 Kovy ve vodách – hliník Polynukleární komplexy mohou mít lineární nebo sférickou strukturu. Nízkomolekulární polyhydroxohlinitany jsou rozpuštěné, výšemolekulární mají koloidní charakter V neutrálním nebo kyselém prostředí dále probíhá tvorba sulfatokomplexů [AlSO 4 ]+, [Al 2 (SO 4 ) 2 ] 2+, fosfatokomplexů [AlHPO 4 ] +, fluorokomplexů. V alkalickém prostředí dochází k transformaci na hydroxokomplexy Z polynukleárních hydroxokomplexů se postupně tvoří tuhá fáze – hydratovaný oxid hlinitý Al 2 O 3.xH 2 O

9 Kovy ve vodách – železo Přirozený původ: Nejrozšířenější železné rudy - FeS 2 pyrit, Fe 2 O 3 krevel, Fe 3 O 4 magnetovec, Fe 2 O 3.H 2 O limonit, FeCO 3 siderit. Významnější látkový tok Fe do vod je podmíněn rozpouštěním těchto rud vodami s vyšším obsahem CO2 Sulfidické rudy mohou oxidovat za přítomnosti chemolitotrofních mikrobů (biochemická oxidace) Antropogenní zdroje: Odpadní vody ze zpracování Fe, korozní procesy Formy výskytu: Formy výskytu rozpuštěného a nerozpuštěného Fe ve vodách závisejí na hodnotě pH, oxidačně-redukčním potenciálu akomplexotvorných látkách přítomných ve vodě. Fe II (v oxidačním stupniII) – v bezkyslíkatém (anoxickém) redukčním prostředí podzemních vod a v povrch. vodách u dna. Rozpustnost Fe II je limitována součinem rozpustnosti Fe(OH) 2, FeCO 3, příp. FeS

10 Kovy ve vodách – železo Fe II Při vyšší koncentraci CO 2 je rozpustnost Fe II v neutrální oblasti limitována součinem rozpustnosti FeCO 3

11 Kovy ve vodách – železo Fe II Ve vodách s obsahem hydrogenuhličitanů jsou převládající formou výskytu rozpuštěného Fe II hydratované ionty Fe 2+, dále hydroxokomplex [FeOH] +. Asociáty [Fe(OH) 2 (aq)] o a [Fe(OH) 3 ] - se uplatňují až v silně alkalickém prostředí. Při vyšších koncentracích Cl - při nižším pH se mohou tvořit chloroželeznatany [FeCl] +, v síranových vodách může být přítomen asociát [FeSO 4 (aq)] o


Stáhnout ppt "Kovy ve vodách Např.: Šíření chemických látek v kontaminovaných půdách je limitováno chemismem půdní vody a sorpčními rovnováhami mezi půdní vodou a tuhou."

Podobné prezentace


Reklamy Google