TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM

Slides:



Advertisements
Podobné prezentace
MOCNINY s přirozeným exponentem
Advertisements

MOCNINY s celým exponentem
POZNÁMKY ve formátu PDF
KOMBINAČNÍ ČÍSLA A BINOMICKÁ VĚTA
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR.
KOMBINAČNÍ ČÍSLA A BINOMICKÁ VĚTA
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
ARITMETICKÁ POSLOUPNOST
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Úplné kvadratické rovnice
POZNÁMKY ve formátu PDF
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
POZNÁMKY ve formátu PDF
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
EKVIVALENCE Mgr. Martina Fainová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
Podpora rozvoje cizích jazyků pro Evropu 21. stol.
ÚHEL DVOU VEKTORŮ Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR Poznámky v PDF.
KONJUNKCE Mgr. Martina Fainová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
MOCNINY s přirozeným exponentem
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
1. Mocnina s přirozeným mocnitelem
Neúplné kvadratické rovnice
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Nerovnice v podílovém tvaru
Funkce a jejich vlastnosti
EXPONENCIÁLNÍ ROVNICE Mgr.Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
Aktivní škola - podpora, zlepšení kvality vzdělávání a výuky na základní škole Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
NEURČITÝ INTEGRÁL Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR Poznámky v PDF.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Soustava kvadratické a lineární rovnice
POSLOUPNOST Mgr.Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
LOGARITMICKÉ ROVNICE Mgr.Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR 1.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
SINOVÁ VĚTA Milan Hanuš;
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
LIMITA FUNKCE Mgr. Martina Fainová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR POZNÁMKY ve formátu PDF.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Výrazy Vypracoval: RNDr. Milan Zimpl, Ph.D.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
POZNÁMKY ve formátu PDF
KOMBINAČNÍ ČÍSLA A BINOMICKÁ VĚTA
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Tato prezentace byla vytvořena
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Inovované podklady ke cvičením ze ZK1
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Obor hodnot funkce Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Yvonna Vančurová. Materiál byl vytvořen v rámci projektu „Škola.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Transkript prezentace:

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR MOCNINY s celým exponentem Mgr. Martina Fainová Newtonův fraktál z8-1=0

Mocnina s celým exponentem Mocnina se Z exponentem je každý výraz an, kde a je číslo reálné a n číslo celé. Příklad: Pomocí věty o dělení mocnin upravte: 35 : 35 a11 : a11 = 30 = a0 Bez mocnin: a) 35 : 35 = 1 b) a11 : a11 = 1 Pro každé reálné číslo a  0 platí: a0 = 1.

Mocnina s celým exponentem Příklad: Pomocí věty o dělení mocnin upravte: 57 : 59 a3 : a8 Bez mocnin: = 5-2 = a-5 Pro každé reálné číslo a  0 a každé celé číslo m platí :

Příklad: Vypočítejte: Pro každá reálná a,b  0 a lib. celé n platí :

Platí analogické věty jako u N exponentu: Pro každé reálné číslo a, b  0 a každé celé číslo r, s platí:

Cvičení: Příklad 1: Vypočtěte zpaměti: Příklad 2: Vypočítejte:

Cvičení: Příklad 4: Zjednodušte: Příklad 5: Zjednodušte a výsledek zapište pomocí mocnin s přirozeným exponentem: