ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/34.1020 NÁZEV PROJEKTU:Peníze do.

Slides:



Advertisements
Podobné prezentace
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 – Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím.
Advertisements

K OMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Variace VY_32_INOVACE_M4r0107 Mgr. Jakub Němec.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o. Osvoboditelů 380, Louny Číslo projektu CZ.1.07/1.5.00/ Číslo sady30Číslo DUM.
Kombinatorika, pravděpodobnost, statistika
Kombinatorika, pravděpodobnost, statistika
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ALGEBRAICKÉ VÝRAZY 10 Algebraické vzorce II
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ALGEBRAICKÉ VÝRAZY 02 Nulový bod
ROVNICE a NEROVNICE 04 Soustavy rovnic I MěSOŠ Klobouky u Brna.
ROVNICE a NEROVNICE 01 Lineární rovnice I MěSOŠ Klobouky u Brna.
ČÍSELNÉ OBORY 18 Odmocniny I MěSOŠ Klobouky u Brna.
ROVNICE a NEROVNICE 12 Rovnice v součinovém tvaru MěSOŠ Klobouky u Brna.
ČÍSELNÉ OBORY 03 Prvočíslo a číslo složené MěSOŠ Klobouky u Brna.
ČÍSELNÉ OBORY 20 Intervaly MěSOŠ Klobouky u Brna.
ŠKOLA: Městská střední odborná škola, Klobouky u Brna,
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ROVNICE a NEROVNICE 03 Vyjádření neznámé MěSOŠ Klobouky u Brna.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ALGEBRAICKÉ VÝRAZY 01 Hodnota výrazu MěSOŠ Klobouky u Brna.
ČÍSELNÉ OBORY 13 Reálná čísla I MěSOŠ Klobouky u Brna.
ROVNICE a NEROVNICE 05 Soustavy rovnic II MěSOŠ Klobouky u Brna.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
Materiály jsou určeny pro výuku matematiky: 3. ročník
ROVNICE a NEROVNICE 15 Exponenciální rovnice I MěSOŠ Klobouky u Brna.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ALGEBRAICKÉ VÝRAZY 17 Mocniny III MěSOŠ Klobouky u Brna.
ČÍSELNÉ OBORY 04 Dělitel a násobek MěSOŠ Klobouky u Brna.
Algebraické vzorce III
ALGEBRAICKÉ VÝRAZY 09 Algebraické vzorce I
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ROVNICE a NEROVNICE 19 Goniometrické rovnice I MěSOŠ Klobouky u Brna.
ČÍSELNÉ OBORY 12 Procenta MěSOŠ Klobouky u Brna. ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/
ALGEBRAICKÉ VÝRAZY 14 Lomené výrazy II MěSOŠ Klobouky u Brna.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ČÍSELNÉ OBORY 02 Přirozená čísla MěSOŠ Klobouky u Brna.
ROVNICE a NEROVNICE 08 Kvadratické rovnice II MěSOŠ Klobouky u Brna.
ALGEBRAICKÉ VÝRAZY 06 Dělení mnohočlenů MěSOŠ Klobouky u Brna.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
ROVNICE a NEROVNICE 20 Goniometrické rovnice II MěSOŠ Klobouky u Brna.
ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_42_INOVACE_12_15 Název materiáluKombinatorika.
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
KOMBINATORIKA Je část matematiky, která se zabývá uspořádáním daných prvků podle určitých pravidel do určitých skupin Máme množinu n různých prvků, z níž.
ČÍSELNÉ OBORY 16 Mocniny I
Opakování Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
Opakování Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
ALGEBRAICKÉ VÝRAZY 13 Lomené výrazy I
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Matematika Variace.
ALGEBRAICKÉ VÝRAZY 08 Vytýkání II
DIGITÁLNÍ UČEBNÍ MATERIÁL
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Vzdělávání pro konkurenceschopnost
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Transkript prezentace:

ŠKOLA:Městská střední odborná škola, Klobouky u Brna, nám. Míru 6, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Peníze do škol ČÍSLO ŠABLONY:III/2 Inovace a zkvalitnění výuky prostřednictvím ICT AUTOR:Mgr. Vítězslav Kurz TEMATICKÁ OBLAST: Kombinatorika, pravděpodobnost a statistika NÁZEV DUMu:Variace bez opakování POŘADOVÉ ČÍSLO DUMu:05 KÓD DUMu:VY_32_INOVACE_2_3_05_KUR DATUM TVORBY: ANOTACE (ROČNÍK):Prezentace je určena pro použití v předmětu Seminář z matematiky, který je vyučován ve 3. a 4. ročníku. Je vytvořena k použití ve vyučovací hodině, je možno ji však použít i k samostudiu při přípravě k maturitě.

Doporučené vzorce

Variace bez opakování Př.1: Kolika způsoby může být dopadnout závod, kterého se účastní 40 závodníků, jestliže je pro nás rozhodující umístění na místě? Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky? Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku?

Příklad 1 Př.1: Kolika způsoby může být dopadnout závod, kterého se účastní 40 závodníků, jestliže je pro nás rozhodující umístění na místě? Musíme si uvědomit, že se jedná o variace bez opakování. U závodníků však evidentně záleží na pořadí a žádný ze závodníků nemůže být na dvou různých místech celkového umístnění.

Příklad 1 Př.1: Kolika způsoby může být dopadnout závod, kterého se účastní 40 závodníků, jestliže je pro nás rozhodující umístění na místě? Musíme si uvědomit, že se jedná o variace bez opakování. U závodníků však evidentně záleží na pořadí a žádný ze závodníků nemůže být na dvou různých místech celkového umístnění. Vybíráme tedy 3 závodníky (tři nejlepší) z celkem 40.

Příklad 1 Př.1: Kolika způsoby může být dopadnout závod, kterého se účastní 40 závodníků, jestliže je pro nás rozhodující umístění na místě?

Příklad 1 Př.1: Kolika způsoby může být dopadnout závod, kterého se účastní 40 závodníků, jestliže je pro nás rozhodující umístění na místě?

Příklad 1 Př.1: Kolika způsoby může být dopadnout závod, kterého se účastní 40 závodníků, jestliže je pro nás rozhodující umístění na místě?

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky? U slova SYMBOL nám záleží na pořadí (protože by vzniklo jiné slovo). Každé písmeno tohoto slova budeme používat právě jednou.

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky? U slova SYMBOL nám záleží na pořadí (protože by vzniklo jiné slovo). Každé písmeno tohoto slova budeme používat právě jednou. Označíme si S… souhláska, A… samohláska. Slovo SYMBOL obsahuje 2 samohlásky a 4 souhlásky. Nejdříve rozmístíme samohlásky. Můžeme je umístit ve slově 2 způsoby: SASSAS (první je buď Y nebo O)

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky? U slova SYMBOL nám záleží na pořadí (protože by vzniklo jiné slovo). Každé písmeno tohoto slova budeme používat právě jednou. Označíme si S… souhláska, A… samohláska. Slovo SYMBOL obsahuje 2 samohlásky a 4 souhlásky. Nejdříve rozmístíme samohlásky. Můžeme je umístit ve slově 2 způsoby: SASSAS (první je buď Y nebo O) Mezi těmito dvěma samohláskami mají stát dvě souhlásky. Záleží na jejich pořadí, jedná se tedy o dvoučlenné variace ze čtyř prvků.

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky?

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky?

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky?

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky?

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky?

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky?

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky?

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky?

Příklad 2 Př.2: Kolika způsoby lze přestavět písmena slova SYMBOL tak, aby mezi 2 samohláskami stály 2 souhlásky?

Příklad 2 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku? V tomto příkladu je možná těžší si uvědomit, že jde také o variace s opakováním. Je potřeba si uvědomit, že studenti jsou vzájemně rozlišitelní a že také ze zadání plyne, že i nádobí je vzájemně rozlišitelné.

Příklad 2 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku? V tomto příkladu je možná těžší si uvědomit, že jde také o variace s opakováním. Je potřeba si uvědomit, že studenti jsou vzájemně rozlišitelní a že také ze zadání plyne, že i nádobí je vzájemně rozlišitelné. Budeme rozmísťovat třeba nejdříve šálky mezi studenta A,B,C.

Příklad 2 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku? V tomto příkladu je možná těžší si uvědomit, že jde také o variace s opakováním. Je potřeba si uvědomit, že studenti jsou vzájemně rozlišitelní a že také ze zadání plyne, že i nádobí je vzájemně rozlišitelné. Budeme rozmísťovat třeba nejdříve šálky mezi studenta A,B,C. Studentovi A můžeme vybrat z celkem 4 šálků.

Příklad 2 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku? V tomto příkladu je možná těžší si uvědomit, že jde také o variace s opakováním. Je potřeba si uvědomit, že studenti jsou vzájemně rozlišitelní a že také ze zadání plyne, že i nádobí je vzájemně rozlišitelné. Budeme rozmísťovat třeba nejdříve šálky mezi studenta A,B,C. Studentovi A můžeme vybrat z celkem 4 šálků. Studentovi B můžeme vybrat z celkem 3 šálků (jeden jsme již použili)

Příklad 2 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku? V tomto příkladu je možná těžší si uvědomit, že jde také o variace s opakováním. Je potřeba si uvědomit, že studenti jsou vzájemně rozlišitelní a že také ze zadání plyne, že i nádobí je vzájemně rozlišitelné. Budeme rozmísťovat třeba nejdříve šálky mezi studenta A,B,C. Studentovi A můžeme vybrat z celkem 4 šálků. Studentovi B můžeme vybrat z celkem 3 šálků (jeden jsme již použili) Studentovi C můžeme vybrat z celkem 2 šálků (dva jsme již použili) Celkem tedy vybíráme tři z celkem čtyř šálků.

Příklad 2 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku?

Příklad 2 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku?

Příklad 3 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku? Talířky vybíráme také pro tři studenty z celkem 5 talířků. Možností je:

Příklad 3 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku?

Příklad 3 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku?

Příklad 3 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku?

Příklad 3 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku?

Příklad 3 Př.3: V pokoji studentské koleje žijí 3 studenti. Mají 4 šálky, 5 talířků a 6 kávových lžiček, přičemž se všechny šálky, talířky i lžičky navzájem odlišují. Kolika způsoby mohou prostřít stůl k pití kávy, když každý z nich dostane jeden šálek, jeden talířek a jednu lžičku?

Závěrečná strana