Pohyb bičíky a fyzikální zvláštnosti života v mikrosvětě

Slides:



Advertisements
Podobné prezentace
Smykové tření a valivý odpor
Advertisements

vlastnosti kapalin a plynů I. Hydrostatika
KINETICKÁ TEORIE STAVBY LÁTEK.
Pevné látky a kapaliny.
HYDROMECHANICKÉ PROCESY Potrubí a potrubní sítě
Proudění tekutin Ustálené proudění (stacionární) – všechny částice se pohybují stejnou rychlostí Proudnice – trajektorie jednotlivých částic proudící tekutiny.
Mechanika tekutin Kapalin Plynů Tekutost
VODA A VODNÍ REŽIM V ZEMINÁCH PODLOŽÍ
Základy mechaniky tekutin a turbulence
Gymnázium, Havířov-Město, Komenského 2, p.o.
Vnější páry mikrotubulů Středový pár Dyneinová raménka
Pohybové účinky síly. Pohybové zákony
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Kapaliny.
Tření Třecí síla. (Učebnice strana 91 – 95)
Prvoci Jednobuněční živočichové Žijí ve vodním nebo vlhkém prostředí
ODPOROVÁ SÍLA …a související jevy.
Laminární proudění pod drobnohledem
Fyzika 7.ročník ZŠ Newtonovy pohybové zákony Creation IP&RK.
Smykové tření, valivé tření a odpor prostředí
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _658 Výukový materiál zpracován v rámci projektu EU peníze školám.
EUKARYOTICKÁ BUŇKA Velikost – v mikrometrech (10–100, i větší)
Srovnání prokaryotických a eukaryotických buněk
Práce vyjadřuje osobní názory autorů. Práce vznikla v rámci výuky. Práce v žádném případě nevyjadřuje stanoviska Českého vysokého učení technického v Praze.
Látky mohou mít tři skupenství:
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
9. Hydrodynamika.
4.Dynamika.
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: Soňa Brunnová Název materiálu: VY_32_INOVACE_20_PROUDENI.
Mechanika kapalin a plynů
Výukový materiál zpracován v rámci projektu EU peníze školám
Středn í zdravotnick á š kola, N á rodn í svobody P í sek, př í spěvkov á organizace Registračn í č í slo projektu: CZ.1.07/1.5.00/ Č.
VY_32_INOVACE_03-01 Živočišná buňka
Buňka - základní stavební a funkční jednotka živých organismů
Středn í zdravotnick á š kola, N á rodn í svobody P í sek, př í spěvkov á organizace Registračn í č í slo projektu: CZ.1.07/1.5.00/ Č.
my.cz Název školy Střední odborná škola a Gymnázium Staré Město Číslo projektu CZ.1.07/1.5.00/ Autor Ing. Luboš Bělohrad Název šablony.
Jméno: Miloslav Dušek Fakulta: Strojní Datum:
Energetický metabolismus
POHYB Obecné principy.
Semiautonomní organely a cytoskelet
Přerušení platnosti relací -rovnice či funkce modelu mohou mít omezenou platnost -při určitém (mezním) stavu systému je nutné jedny tvary těchto funkcí.
Hydrodynamika Mgr. Kamil Kučera.
Mechanika tekutin Tekutiny Tekutost – vnitřní tření
ANALÝZA TEPLOTNÍHO POLE OKENNÍHO RÁMU MKP Martin Laco, Vladimír Špicar ®
Pohyb buněk a organismů
Reálná kapalina, obtékání těles
PRVOCI I 8. září 2013 VY_52_INOVACE_210201
Tekutiny Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Radim Frič. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací.
Svalová soustava - protista až žahavci Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Tematická oblast Biologie – biologie živočichů.
Pohyb bičíky a fyzikální zvláštnosti života v mikrosvětě Vladimír Hampl.
Hydrodynamika ustálené proudění rychlost tekutiny se v žádném místě nemění je statické vektorové pole proudnice – čáry k nimž je rychlost neustále tečnou.
Anotace: Prezentace slouží k přehledu tématu vlastnosti vod Je určena pro výuku ekologie a monitorování životního prostředí v 1. a 2. ročníku střední.
Proudění tekutin Částice tekutiny se pohybuje po trajektorii, která se nazývá proudnice.
Buňka - základní stavební a funkční jednotka živých organismů.
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Anna Červinková Název prezentace (DUMu): 20. Hydrodynamika Název sady: Fyzika pro 1. ročník středních škol –
Laminární proudění reálné kapaliny tlaková síla: síla vnitřního tření: parabolický rychlostní profil Objemový průtok potrubím Q Hagen-Poiseuillův zákon.
Molekulová fyzika a termika
Tepelný pohyb částic VY_32_INOVACE_11_212
Reynoldsovy rovnice pro turbulentní proudění
Gymnázium, Třeboň, Na Sadech 308
VY_32_INOVACE_ ROČNÍK Brzdné síly Název školy
Přípravný kurz Jan Zeman
Digitální učební materiál
Hydrostatika Tlak ideální kapalina je nestlačitelná r = konst
Inovace bakalářského studijního oboru Aplikovaná chemie
Mechanika tekutin Tekutiny – kapaliny a plyny, nemají stálý tvar, tekutost různá – příčinou viskozita (vnitřní tření) Kapaliny – málo stlačitelné – stálý.
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu VY_32_INOVACE_15-02
Prokaryotická buňka.
Pohybové rovnice – numerické řešení
1. Newtonův pohybový zákon – Zákon síly
Transkript prezentace:

Pohyb bičíky a fyzikální zvláštnosti života v mikrosvětě Vladimír Hampl

BIČÍKY, ŘASINKY, BRVY Prokaryotický bičík = „bič“ Eukaryotický bičík = „had“ Bičíkovec Nálevník Řasinkový epitel

EUKARYOTICKÝ BIČÍK - CILIUM Vnější páry mikrotubulů Středový pár Dyneinová raménka Radiální paprsky Průřez bičíkem Bičíky Průřez bazálním tělískem Bazální tělísko Plazmatická membrána Triplety Pohyb bičíku

EUKARYOTICKÝ BIČÍK - CILIUM Bičík je tvořen cca 331 proteiny u Trypanosoma brucei, 279 proteiny u Chlamydomonas reinhardtii a 263 proteiny u Tetrahymena thermophila. Jana a kol. 2013

BIČÍKOVÝ PROTEOM TRYPANOSOMY a, Transmission electron micrograph showing the flagellum (arrow) and flagellar pocket (asterisk). b, The 9 + 2 axoneme and the PFR. c, One-dimensional electrophoretic separation of isolated flagella. d, Distribution of TbFP protein homologues. e, Comparison of the T. brucei, Chlamydomonas reinhardtii (CrFPaxo) and T. thermophila flagellar proteomes. For each comparison, green indicates present in both; orange/red indicates present in opposing genome but not opposing proteome; blue/yellow indicates no homologue in opposing genome. Homology determined by alignment to each genome with reciprocal alignment by BLASTP. Scale bars, 1 m (a); 200 nm (b).

DE NOVO TVORBA BIČÍKU - NAEGLERIA

DE NOVO TVORBA BIČÍKU - NAEGLERIA

DE NOVO TVORBA BIČÍKU - NAEGLERIA

STRUKTURA BIČÍKU - AXONEMA (Mitchell, 2000)

JAK VZNIKAJÍ PRAVIDELNÉ REPETICE Oda a kol. 2014

JAK VZNIKAJÍ PRAVIDELNÉ REPETICE Oda a kol. 2014

JAK VZNIKAJÍ PRAVIDELNÉ REPETICE Oda a kol. 2014

PRINCIP OHYBU BIČÍKU

Chlamydomonas (Ginger a kol, 2008) ROLE CENTRÁLNÍHO PÁRU radial spokes and central apparatus may be involved in converting simple symmetric bends into the asymmetric waveforms required for forward swimming. Wakabayashi et al. [1997] and Frey et al. [1997] have demonstrated that isolated axonemes from central pairless and radial spokeless mutants reactivated at low ATP concentration also undergo modest waveform conversion in response to changes in calcium concentration. Therefore, the central apparatus and radial spokes are not an absolute requirement for calcium-induced waveform conversion. Cilia and flagella with 9+2 axonemes generally have large amplitude, planar waveforms during at least one phase, if not the entire, beat cycle. It is possible that the CP/RS system contributes to the production of planar waveforms. Structural studies of Paramecia cilia revealed that the central apparatus rotates within the nine doublet microtubules; it rotates once per beat and with a slight twist that has the same period as that of the propagating bend [Omoto and Kung, 1979]. Rotation of the central pair has also been observed for flagella of other species including Chlamydomonas [reviewed in Omoto et al., 1999]. It is not known whether interactions of the central pair projections with the radial spoke heads during rotation induce tilt in the spokes relative to the circumferential axis of the axoneme. If this is the case, then the radial spokes would potentially experience distortion in two directions: longitudinally as the microtubules slide, and circumferentially as the central apparatus rotates. From these combined studies, we can draw several conclusions independent of central apparatus rotation. First, the orientation and asymmetry of the central apparatus most likely correlates with dynein activity on specific doublet microtubules. Second, the central pair projections make contact with the radial spoke heads in cycles of detachment and reattachment. Based on the experimental results cited above, we propose that the CP/RS network of structures operates as both a mechanical and chemical transducer. Mechanical input includes interactions between the radial spokes and central apparatus. Chemical input includes binding of second messengers, changes in enzymatic activity of anchored kinases and phosphatases, and localized changes in phosphorylation of axonemal proteins in the CP/RS control system. In each case, output involves changes in the physical and chemical properties of the radial spokes on subsets of doublet microtubules for local control of dynein activity. Localized interactions of the radial spokes and central apparatus are predicted to differentially alter dynein activity on one side of the axoneme relative to the propagating bend [Mitchell, 2003a;Wargo and Smith, 2003]; this axonemal axis is defined by the inherent asymmetry of the central apparatus. Modulation of microtubule sliding by localized control of dynein activity may involve the localized phosphorylation of key regulatory proteins including subunits of the dynein arms [Hamasaki et al., 1991;Habermacher and Sale, 1997;King and Dutcher, 1997;Yang and Sale, 2000;Christensen et al., 2001] and possibly components of the DRC. These modifications are not likely to operate on the time scale of a single beat cycle to modulate the inherent oscillatory behavior of beating cilia and flagella. Rather, additional beat parameters, such as waveform and stroke direction, most likely result from specific modifications that occur on a slower time course and affect particular axonemal components, including the dynein arms and CP/RS Cell Motil Cytoskeleton. Author manuscript; available in PMC 2007 August 23. NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript control system. The continued molecular dissection of the CP/RS control system is essential for elucidating the physical and biochemical properties of the radial spokes and central apparatus; Smith and Yang Page 8 Chlamydomonas (Ginger a kol, 2008) Spermie ježovky (Nicastro a kol, 2005) Video

TVAR CENTRÁLNÍHO PÁRU Tetrahymena Chlamydomonas Pigino a kol. 2012

ROLE RADIÁLNÍCH PAPRSKŮ A transverse view of a Chlamydomonas flagellum as viewed looking proximal to distal; the outer doublet microtubules are numbered according to Hoops and Witman [1983]. The direction of the effective stroke is indicated by the arrow. Only doublet number one lacks an outer dynein arm. A single doublet microtubule (doublet one) with associated radial spoke, as well as the entire central apparatus, is enlarged. The radial spoke diagram is further enlarged to include details of the possible location of particular radial spoke components. RSP2 serves as the primary stalk component and consists of GAF domains as well as calmodulin (CM) binding domains [Yang et al., 2002]. The central apparatus diagram is adapted from Mitchell and Sale [1999]. While PF6, PF16, PP1c, AKAP240, KRP, and KLP1 have been tentatively localized to specific central tubules (see Table I), it is unknown whether they localize to specific projections. Therefore, they are listed above the central apparatus diagram. For references, see Table I. Chlamydomonas (Smith a kol, 2004)

STRUKTURA BIČÍKU - AXONEMA (Mitchell, 2000)

PRODUKCE ATP V BIČÍKU

MODIFIKACE STRUKTURY BIČÍKU Chlamydomonas Trypanosoma (Ginger a kol, 2008)

RYCHLOST POHYBU BIČÍKOVCŮ Bičíky bijí normálně 50x, ale až 70x (Crithidia), 90x (úhoří spermie). Většina bičíkovců – až 0,2 mm/s Obrněnky – až 0,5 mm/s Nálevníci – až 1 mm/s Jaké fyzikální faktory ovlivňují pohyb bičíkovců v prostředí?

POHYB ČÁSTICE V PROSTŘEDÍ < 2-4.103 < Laminární proudění Turbulentní proudění Dává do souvislosti setrvačné síly a viskozitu (tedy odpor prostředí v důsledku vnitřního tření). Pomocí toho čísla je možné určit, zda je proudění tekutiny laminární a nebo turbulentní. Čím je Reynoldsovo číslo vyšší, tím nižší je vliv třecích sil částic tekutiny na celkový odpor. Rychlost částice Velikost částice   R= Kinematická viskozita prostředí

ŽIVOT VE SVĚTĚ MALÝCH R ν R = 106 R = 104 R = 10-3 1 cSt = 10-6 m2/s

MEZNÍ VRSTVA KAPALINY Mezní vrstva (šedě) je vrstva kapaliny, ve které se proudění vlivem blízkosti povrchu zpomaluje nebo zcela zastaví.

ŘASINKOVÝ POHYB

VLNA

VLNA

VLNA

VLNA

MASTIGONEMY Chrysophycae

DLOUHÝ BIČÍK NEZNAMENÁ RYCHLEJŠÍ POHYB

DLOUHÝ BIČÍK NEZNAMENÁ RYCHLEJŠÍ POHYB

HETERODYNAMICKÉ BIČÍKY Přední bičík pádluje jako řasinka, zřejmě řídí směr pohybu a natáčí buňku Směr pohybu Zadní bičík se vlní směrem od báze a žene buňku vpřed Malawimonas

HETERODYNAMICKÉ BIČÍKY

OBRNĚNKY

OBRNĚNKY

OBRNĚNKY

ZMĚNA POHYBU BIČÍKŮ U CHLAMYDOMONAS Chemical signaling involves the interaction of second messengers, such as cyclic nucleotide monophosphates and calcium [reviewed in Brokaw, 1987;Tash, 1989;Satir, 1995,1999] with conserved protein receptors and enzymes anchored to the axoneme, some of which are components of the radial spokes and central apparatus (Table I). Motility changes mediated by these second messengers include inducing quiescence in beating flagella, activating motility, increasing beat frequency, reversing the direction of the effective stroke, or changing waveform. The effect of second messengers is mediated at least in part through secondmessenger- dependent kinases and phosphatases, such as cAMP-dependent protein kinase A (PKA), cGMP-dependent protein kinase (PKG), calmodulin dependent kinase, and calcineurin (PP2B) [Tash and Means, 1983;Tash et al., 1988;Chaudhry et al., 1995;San Agustin et al., 1998;Smith, 2002a]. It is possible that some second messengers affect motility by additional mechanisms that are independent of phosphorylation. For example, several subunits of dynein motors are EF-hand proteins that may bind calcium directly, altering dynein activity [Piperno et al., 1992;King and Patel-King, 1995;Yanagisawa and Kamiya, 2001;Casey et al., 2003;Guerra et al., 2003]. Chemical signaling also includes axonemal enzymes that are not directly sensitive to second messengers including casein kinase 1 (CK1), PP1, and PP2A, all of which appear to be involved in the control of dynein-driven motility [Walczak and Nelson, 1993;Habermacher and Sale, 1996;Yang et al., 2000;Yang and Sale, 2000;Smith, 2002b]. Diverse evidence indicates that the CP/RS system is not required for oscillatory beating of the axoneme. Rather, the outer doublet microtubules and associated dynein arms appear to be sufficient for the initiation and propagation of bends. Thus, the question remains, what is the role of the central apparatus and radial spokes? The simplest model is that the CP/RS system performs as a signal transducer for controlling the size and shape of the bend and for modifying motility in response to specific signals.

FOTORECEPCE Video - Leishmania

MEMBRANELY A CIRY Nejsou sice fyzicky spojeny, ale leží v mezní vrstvě souseda. V důsledku toho mají tendenci se pohybovat koordinovaně, aniž by musely být jinak regulovány. Computation of the Internal Forces in Cilia: Application to Ciliary Motion, the Effects of Viscosity, and Cilia Interactions Shay Gueron and Konstantin Levit-Gurevich Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel This paper presents a simple and reasonable method for generating a phenomenological model of the internal mechanism of cilia. The model uses a relatively small number of parameters whose values can be obtained by fitting to ciliary beat shapes. Here, we use beat patterns observed in Paramecium. The forces that generate these beats are computed and fit to a simple functional form called the “engine.” This engine is incorporated into a recently developed hydrodynamic model that accounts for interactions between neighboring cilia and between the cilia and the surface from which they emerge. The model results are compared to data on ciliary beat patterns of Paramecium obtained under conditions where the beats are two-dimensional. Many essential features of the motion, including several properties that are not built in explicitly, are shown to be captured. In particular, the model displays a realistic change in beat pattern and frequency in response to increased viscosity and to the presence of neighboring cilia in configurations such as rows of cilia and two-dimensional arrays of cilia. We found that when two adjacent model cilia start beating at different phases they become synchronized within several beat periods, as observed in experiments where two flagella are brought into close proximity. Furthermore, examination of various multiciliary configurations shows that an approximately antiplectic wave pattern evolves autonomously. This modeling evidence supports earlier conjectures that metachronism may occur, at least partially, as a self-organized phenomenon due to hydrodynamic interactions between neighboring cilia.

CHŮZE POMOCÍ BIČÍKŮ Euplotes

SHRNUTÍ Eukaryotický bičík je „had“. Sestává ze stovek proteinů a je strukturně velmi konzervovaný. Motorem pohybu je klouzání dyneinů po mikrotubulech na obvodu. Aktivita dyneinů je regulována centálním komplexem, paprsky a blízkostí mikrotubulů, po kterých kráčí. Protista žijí ve světě malých Reynoldových čísel, kde neexistuje setrvačnost. Hydrodynamiku ovlivňuje také existence mezní vrstvy. Hladký bičík žene 2x více tekutiny, pokud se pohybuje ve směru příčném než ve směru podélném U bičíku s mastigonematy se toto pravidlo obrací a obrací se také směr pohybu.

KLOUZAVÝ POHYB