Hartree-Fockova metoda
Opakování z minula
AO → MO → SD Kvantově chemický výpočet: 1)zvolíme vhodné atomové orbitály (tzv. bázi atomových orbitalů, basis set) 2)vypočítáme koeficienty v MO = Σc i AO 3)zkonstruujeme výslednou vlnovou funkci z jednoelektronových MO jako Slaterův determinant
množině AO se říká báze (basis set), z něj konstruujeme výsledné jednoelektronové MO STO vs. GTO kvalita báze –minimální báze –double zeta (triple, quadruple) –split valence double zeta –polarizační funkce (ano/ne na vodíky) kontrakce bází
MO se konstruují jako lineární kombinace atomových orbitálů (MO LCAO) 3-21G báze Kolika bázovými funkcemi je popsán atom vodíku? Dvěma typu s. Kolika bázovými funkcemi je popsán atom uhlíku? Třemi typu s a dvěma typu p. vodík má 1 elektron, uhlík 6 elektronů
split-valence double zeta: ψ = c 1 1s‘ H +c 2 1s‘‘ H +c 3 1s‘ C +c 4 2s‘ C +c 5 2s‘‘ C +c 6 2p‘ C +c 7 2p‘‘ C 3-21G … vodík – 2 s, uhlík – 3 s a 2 p spinorbitaly
a nyní se podíváme na atomové orbitály, tedy s H, s C a p C AO jsou řešením atomu vodíku a jsou funkcí,, STO v praxi se však z výpočetních důvodů nepracuje přímo s STO, ale s GTO, které jsou funkcí ψ = c 1 1s‘ H +c 2 1s‘‘ H +c 3 1s‘ C +c 4 2s‘ C +c 5 2s‘‘ C +c 6 2p‘ C +c 7 2p‘‘ C
H 0 S S C 0 S SP SP G exponent koeficienty pro s koeficienty pro p
ψ = c 1 1s‘ H +c 2 1s‘‘ H +c 3 1s‘ C +c 4 2s‘ C +c 5 2s‘‘ C +c 6 2p‘ C +c 7 2p‘‘ C 1s‘ H = 2.1e e s‘‘ H = 1.0e s‘ C = 0.03e e e -10 2s‘ C = 0.002e e -4 2s‘‘ C = 1.0e -2 2p‘ C = 12e e -4 2p‘‘ C = 1.0e -2
exponent koeficienty pro skoeficienty pro p 6-31G báze pro C
difuzní fce s pro H, s a p pro těžké atomy + či ++ před G 6-31+G polarizační fce v závorce za G (těžký atom, vodík) G(2df,2pd) alternativně pro jednu sadu polarizačních fcí se používá *, **: 6-31+G* = 6-31+G(d)
6-31G pro uhlík 6-31+G* pro uhlík diffuse polarization exponent koeficienty pro s koeficienty pro p
Nový materiál
Dunningovy cc báze cc... korelačně konzistentní optimalizované za použití korelované (CISD) funkce cc-pVXZ korelačně konzistentní valence polarizovaná X-zeta báze –cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z,... funkce jsou dodávány ve slupkách (shells) –cc-pVDZ pro C je 3s2p1d, cc-pVTZ je 4s3p2d1f
cc-pVDZ cc-pVTZ
konvergují k nekonečné bázi aug-cc-pVDZ znamená difuzní funkce dodané pro každý angulární moment přítomný v bázi (tedy např. s, p a d pro uhlík)
Báze prakticky větší = lepší –obvykle, třeba vybalancovat s použitou metodou, cc-pVQZ je overkill pro HF STO-3G nepoužívat difuzní fce pro anionty cc-pVDZ není vždy lepší než 6-31G(d,p), ale cc-pVTZ vždy lepší než 6-311G(d,p) Basis set exchange –
Variační princip existují různé funkce které splňují podmínky kladené na vlnovou funkci kvalitu těchto funkcí je možno posoudit na základě energií jim příslušejících čím nižší, tím lepší
Hartree-Fock SCF herci na scéně
z determinantu a Hamiltoniánu sestrojíme N-elektronovou Schrödingerovu rovnici odvodíme Hartree-Fockovy rovnice N-el Schr. se rozpadá na N 1-el Fockových rovnic Fockián je „1-D Hamiltonián“, V i {j} je interakční potenciál mezi jedním elektronem a všemi ostatními (zprůměrováno) háček: Fockián obsahuje spinorbitaly, na které působí (neboť ρ=φ 2 )
elektrony se pohybují v potenciálu který samy vytvořily, mluvíme o self-konzistentním poli SCF M – počet bázových funkcí při řešení Fockových rovnic je tedy potřeba iterovat –volba počátečních MO - φ i –zkonstruuji z nich Fockián –vyřeším Fockovy rovnice, tak získám nové φ i –pokračuji až do dosažení konvergenčního kritéria