Přípravný kurz - příklady. 1. Cyklista ujel první čtvrtinu cesty rychlostí v 1, další tři čtvrtiny pak rychlostí 20 km/hod, průměrná rychlost na celé.

Slides:



Advertisements
Podobné prezentace
Smykové tření a valivý odpor
Advertisements

Zpracovala Iva Potáčková
Mechanika tuhého tělesa
Přeměny energií Při volném pádu se gravitační potenciální energie mění na kinetickou energii tělesa. Při všech mechanických dějích se mění kinetická energie.
Skalární součin Určení skalárního součinu
2.2. Dynamika hmotného bodu … Newtonovy zákony
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G
vlastnosti kapalin a plynů I. Hydrostatika
PRÁCE, ENERGIE, VÝKON hanah.
Mgr. Ladislav Dvořák PdF MU, Brno
Mechanika kapalin a plynů
Proudění tekutin Ustálené proudění (stacionární) – všechny částice se pohybují stejnou rychlostí Proudnice – trajektorie jednotlivých částic proudící tekutiny.
Mechanika tekutin tekutina = látka, která teče
Mechanika tuhého tělesa
5. Práce, energie, výkon.
7. Mechanika tuhého tělesa
STRUKTURA A VLASTNOSTI
PEVNÉHO TĚLESA A KAPALINY
Magnetické pole.
ELEKTROMAGNETICKÁ INDUKCE.
Mechanická práce a energie
V. Nestacionární elektromagnetické pole, střídavé proudy
Dynamika.
Jaká síla způsobuje harmonické kmitání?
24. ZÁKONY ZACHOVÁNÍ.
Plyny Plyn neboli plynná látka je jedno ze skupenství látek, při kterém jsou částice relativně daleko od sebe, pohybují se v celém objemu a nepůsobí na.
TLAK PLYNU Z HLEDISKA MOLEKULOVÉ FYZIKY.
Struktura a vlastnosti kapalin
33. Elektromagnetická indukce
magnetické pole druh silového pole vzniká kolem: vodiče s proudem
Jednoduché stroje Kladka, Pevná a volná kladka,
1. KINEMATIKA HMOTNÝCH BODŮ
Mechanika kapalin a plynů
Elektromagnetická indukce
Elektromagnetická indukce
Nestacionární magnetické pole
Elektromagnetická indukce
34. Elektromagnetický oscilátor, vznik střídavého napětí a proudu
POVRCHOVÁ SÍLA KAPALIN
Škola: Chomutovské soukromé gymnázium Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Moderní škola Název materiálu:VY_32_INOVACE_FYZIKA1_14 Tematická.
Gravitační pole Pohyby těles v gravitačním poli
Přípravný kurz - příklady
Název úlohy: 5.7 Smykové tření
VY_32_INOVACE_11-20 Mechanika II. Kapaliny – test.
Skládání kmitů.
Moment setrvačnosti momenty vůči souřadnicovým osám x,y,z
Přípravný kurz Jan Zeman
Dj j2 j1 Otáčivý pohyb - rotace Dj y x POZOR!
DiFy - P , Fyzika jako vyučovací předmět RVP a ŠVP Časová dotace pro fyziku na ZŠ Význam fyziky pro všeobecné vzdělání.
Registrační číslo: CZ.1.07/1.5.00/ Název projektu: EU peníze středním školám Gymnázium a Střední odborná škola, Podbořany, příspěvková organizace.
Kmity frekvence f (Hz) perioda T = 1/f (s) w = 2p.f
Vnitřní energie, teplo, teplota. Celková energie soustavy Kinetická energie – makroskopický pohyb Potenciální energie – vzájemné působení těles (makroskopicky)
Fyzika pro lékařské a přírodovědné obory Ing. Petr VáchaZS – Mechanika tuhého tělesa.
Fyzika I-2016, přednáška Dynamika hmotného bodu … Newtonovy zákony Použití druhého pohybového zákona Práce, výkon Kinetická energie Zákon zachování.
Struktura a vlastnosti plynů. Ideální plyn 1.Rozměry molekul ideálního plynu jsou zanedbatelně malé ve srovnání se střední vzdáleností molekul od sebe.
Gravitační pole – princip superpozice potenciál: v poloze [0,0] v poloze [1,0.25]
Základy elektrotechniky Elektromagnetická indukce
Přípravný kurz - příklady
Jaká síla způsobuje harmonické kmitání?
Přípravný kurz Jan Zeman
Dopplerův jev Christian Doppler, Praha 1842 pohybující se zdroj vlnění
STRUKTURA A VLASTNOSTI
Hydrostatika Tlak ideální kapalina je nestlačitelná r = konst
MECHANIKA.
WEHNELTOVA TRUBICE.
Střídavý proud - 9. ročník
ELEKTROMAGNETICKÁ INDUKCE.
Tlak v kapalině Pascalův zákon.
Vznik síly Magnetické pole vzniká při pohybu nábojů. Jestliže bude v magnetickém poli vodič, kterým bude procházet elektrický proud, budou na sebe náboje.
Třída 3.A 10. hodina.
Transkript prezentace:

Přípravný kurz - příklady

1. Cyklista ujel první čtvrtinu cesty rychlostí v 1, další tři čtvrtiny pak rychlostí 20 km/hod, průměrná rychlost na celé dráze byla16 km/hod, jaká byla průměrná rychlost v první čtvrtině dráhy? 2. Jaká musí být splněna podmínka aby se HB pohyboval rovnoměrně po kružnici? 3. Těleso,které bylo na počátku v klidu, o hmotnosti m je tlačeno po dráze s vzhůru po nakloněné(uhel α)rovině silou F, součinitel tření mezi tělesem a nakloněnou rovinou je f. Vypočtěte práci vykonanou silou F, přírůstek kinetické a potenciální tíhové energie tělesa a přírůstek vnitřní energie tělesa. 4. Žena o hmotnosti 60,0 kg se rozběhla a doskočila 4,00 m daleko, přičemž horizontální složka vektoru její rychlosti činila 8,00 m/s.Jakou práci musela vynaložit při odrazu, zanedbáme-li odpor vzduchu? (Ženu budeme považovat za hmotný bod, a g = 10). 5. Myš o hmotnosti 30,0 g se rozběhla a doskočila 10,0 cm daleko, přičemž horizontální složka vektoru její rychlosti činila 0,5 m/s. Do jaké výšky nad podložkou přitom musela vyskočit, zanedbáme-li odpor vzduchu? (Myš budeme považovat za hmotný bod, a g = 10).

6. Hydraulický lis s průměrem pístu d 1 je spojen s ručním čerpadlem, které má průměr pístu d 2. Na píst čerpadla působí síla, vyvolaná na kratším rameni délky a dvojzvratné páky. Delší rameno má délku b. Vypočtěte sílu kterou lis vyvine. Vypočtěte sílu, kterou lis vyvine, působíme-li na delším rameni silou F Dokažte, že ideální kapalina vytéká ve stěně nádoby ve vzdálenosti h od volné hladiny rychlostí v = √2hg 8. Dřevěný kvádr o hmotnosti m a hustotě ρ úplně ponořený pod hladinu kapaliny o hustotě ρ v, vtlačíme do hloubky h. Vypočítejte práci kterou přitom vykonáme. 9. Do stojícího vagónu o m 1 narazí vagón o m 2 rychlostí v 2, jaká je po nárazu rychlost obou vagónů. 10. Jakou práci vykonáme,posuneme-li tělesem o hmotnosti m rovnoměrným pohybem po dráze s vzhůru po nakloněné rovině svírající s rovinou úhel α. Součinitel smykového tření je f. 11. Na přímý vodič s proudem I působí v homog. mag. poli o indukci B síla F m. Jaká je aktivní délka vodiče svírá-li s indukčními čarami úhel α.

12. V homogenním magnetickém poli, o magnetické indukci B se pohybuje proton po kružnicové trajektorii o poloměru r. Určete velikost jeho rychlosti a kinetickou energii. 13. Plyn o teplotě T je uzavřen pístem ve válci, průřez pístu je S a je na něm položeno závaží, hmotnost pístu se závažím je m. Píst dokonale netěsní, plyn uniká, vypočítejte počet molekul plynu, jestliže píst poklesl o h cm, teplota se nezměnila atmosferický tlak je p a. 14. Kapalina odkapává z kapiláry o vnitřním průměru d. Kolik kapek je v 1cm 3 kapaliny, povrchové napětí kapaliny je σ. 15. Válcová jednovrstvá cívka s N závity a poloměrem r je v homogenním mag. poli o indukci B. Osa cívky svírá s indukčními čarami úhel α. Za dobu t se cívka pootočila a svírá nyní s indukčními čarami úhel β. Určete hodnotu elektromotorického napětí indukovaného v cívce při jejím pootočení. 16. Mechanický oscilátor je tvořen pružinou na níž je zavěšeno závaží, perioda je T 1. Přidáním dalšího závaží se perioda zvětší na T 2. Určete o kolik se pružina po přidání závaží prodloužila.

17. Cívkou prochází střídavý proud o amplitudě napětí U m a amplitudě proudu I m, frekvence střídavého proudu je f. Jakou kapacitu musí mít kondenzátor, který sériově připojíme k cívce aby nastala rezonance.Odpor cívky zanedbáme. 18. Primární cívka transformátoru s transformačním poměrem k je připojena ke zdroji síťového napětí – U 1, sekundární vinutí má odpor R a prochází jím proud A. Určete napětí U na svorkách sekundární cívky transformátoru, ztráty v primárním vinutí neuvažujeme. 19. Do skleněného válce pomalu naléváme vodu a současně držíme u otvoru kmitající ladičku, její zvuk se zesílil v okamžicích, kdy vzdálenost hladiny od otvoru byla x a y. Určete frekvenci kmitání ladičky. 20. Dvě tenké čočky s ohniskovými vzdálenostmi f 1 =10cm a f 2 =5cm jsou ve vzájemné vzdálenosti d=40cm, tvoří ve vzduchu centrovanou optickou soustavu.Předmět vysoký y 1 =0,5cm je ve vzdálenosti a 1 =15cm před první čočkou. Výpočtem určete polohu a vlastnosti obrazu vytvořeného soustavou obou čoček.

21. Jaké brýle potřebuje dalekozraké oko s blízkým bodem ve vzdálenosti a ? 22. Sítnice lidského oka je citlivá na žluté světlo o výkonu P = 1, W. Kolik fotonů žlutého světla dopadá na sítnici za 1s.