TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM

Slides:



Advertisements
Podobné prezentace
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Advertisements

VEKTOR A POČETNÍ OPERACE S VEKTORY
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR.
KOMBINAČNÍ ČÍSLA A BINOMICKÁ VĚTA
ARITMETICKÁ POSLOUPNOST
GRAFY SLOŽENÝCH GONIOMETRICKÝCH FUNKCÍ
Limita posloupnosti (Orientační test )
SMĚRNICOVÝ TVAR ROVNICE PŘÍMKY
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
NEKONEČNÁ GEOMETRICKÁ ŘADA
Limita posloupnosti (3.část)
Lineární funkce Zdeňka Hudcová Přehled učiva ÚvodÚvod Definice a=b=0 a=0 b=0 Vyšetření monotonie Průsečík s y Úkol 1 Úkol 2Definice a=b=0a=0 b=0Vyšetření.
Lineární funkce Zdeňka Hudcová Přehled pro žáky se SPU doc pdf ÚvodÚvod Definice a=b=0 a=0 b=0 Vyšetření monotonie Průsečík s y Úkol 1 Úkol 2Definice a=b=0a=0.
INVERZNÍ FUNKCE Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
Podpora rozvoje cizích jazyků pro Evropu 21. stol.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
ÚHEL DVOU VEKTORŮ Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR Poznámky v PDF.
MOCNINY s přirozeným exponentem
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Posloupnosti a jejich vlastnosti (4.část)
Neúplné kvadratické rovnice
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Funkce a jejich vlastnosti
EXPONENCIÁLNÍ ROVNICE Mgr.Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
Limita posloupnosti (2.část) VY_32_INOVACE_
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Číselné posloupnosti.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
NEURČITÝ INTEGRÁL Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR Poznámky v PDF.
PARABOLA Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
VARIACE S OPAKOVÁNÍM Mgr. Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Limita posloupnosti (1.část)
POSLOUPNOST Mgr.Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR.
LOGARITMICKÉ ROVNICE Mgr.Zdeňka Hudcová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR 1.
Nekonečná geometrická řada Název školyGymnázium Zlín - Lesní čtvrť Číslo projektuCZ.1.07/1.5.00/ Název projektuRozvoj žákovských.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
DEFINICE GONIOMETRICKÝCH FUNKCÍ
LIMITA FUNKCE Mgr. Martina Fainová TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR POZNÁMKY ve formátu PDF.
Funkce a jejich vlastnosti
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Hyperbola Vypracoval: Mgr. Lukáš Bičík
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Geometrická posloupnost
KOMBINAČNÍ ČÍSLA A BINOMICKÁ VĚTA
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Kružnice Vypracoval: Mgr. Lukáš Bičík
V soustavě souřadnic zobrazíme bod A.
Obor hodnot funkce Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Yvonna Vančurová. Materiál byl vytvořen v rámci projektu „Škola.
GRAFICKÉ ŘEŠENÍ SOUSTAVY ROVNIC
Funkce a jejich vlastnosti
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Upravila R.Baštářová.
Výuka matematiky v 21. století na středních školách technického směru
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Transkript prezentace:

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR LIMITA POSLOUPNOSTI Mgr.Zdeňka Hudcová

Vypište prvních šest členů posloupnosti a zobrazte je v soustavě souřadnic PŘÍKLAD: 1 2 3 4 5 6

DEFINICE Číslo a se nazývá limita posloupnosti. Říkáme, že posloupnost (an)n=1∞ je konvergentní, právě, když existuje takové číslo a є R, že platí: Ke každému ε>0 existuje n0 є N tak, že pro všechna přirozená čísla n>n0 je |an-a| < ε. Číslo a se nazývá limita posloupnosti. Posloupnost, která nemá limitu se nazývá divergentní.

ZÁPIS LIMITY POSLOUPNOSTI Každá posloupnost má nejvýše jednu limitu.

DEFINICE 1 2 3 4 5 6 a+ε a-ε Říkáme, že posloupnost je konvergentní, právě když existuje takové číslo aєR, že platí: Ke každému ε>0 existuje n0єN tak, že pro všechna n > n0 je anє(a-ε, a+ε)

  VĚTY O LIMITÁCH

Vypočítej limitu posloupnosti PŘÍKLAD Řešení:

Vypočítej limitu posloupnosti PŘÍKLAD Řešení: 0+3 2+0

NEVLASTNÍ LIMITA POSLOUPNOSTI

PROCVIČUJ !