Konečné automaty Vít Fábera
Konečný automat matematický model chování prvku systému nejčastější použití: konstrukce digitálních obvodů první krok návrhu je sestavení automatového modelu funkce obvodu programování konečný automat je modelem některých softwarových částí, např. lexikálního analyzátoru překladače
konečný automat je modelem chování prvku s diskrétními vstupy a výstupy a s pamětí tj. výstup prvku závisí jednak na aktuální hodnotě vstupních proměnných a také na hodnotě vstupních proměnných v předchozích časových okamžicích návod na vytvoření automatu neexistuje, automatový model vytváří návrhář (konstruktér obvodu, programátor,…)
Definice Konečný automat KA je šestice kde X ... vstupní abeceda (konečná množina vstupních písmen) Y ... výstupní abeceda (konečná množina výstupních písmen) Q ... konečná množina vnitřních stavů ... stavově přechodová funkce, X Q Q ... výstupní funkce, X Q Y Q0 Q ... počáteční vnitřní stav
ve vnitřním stavu si automat „pamatuje“ onu historii vstupních písmen Poznámky: někdy se automat definuje pouze jako pětice bez počátečního stavu, což není příliš vhodné pro praxi po uvedení zařízení do chodu (po zapnutí) většinou požadujeme, aby se chovalo vždy stejně, neboli byl definován počáteční stav ve vnitřním stavu si automat „pamatuje“ onu historii vstupních písmen výstupní funkce určuje výstupní písmeno automatu podle aktuálního vstupu a vnitřního stavu
podle tvaru výstupní funkce rozlišujeme stavově přechodová funkce určuje nový vnitřní stav podle aktuálního vstupního písmene a aktuálního vnitřního stavu, tj. automat si ukládá v nové hodnotě vnitřního stavu novou informaci o historii vstupů podle tvaru výstupní funkce rozlišujeme Mealyho automat : X Q Y Mooreův automat : Q Y oba typy jsou navzájem převoditelné
Existují i další varianty automatů Medvěděvův automat nemá množinu výstupních písmen ani definovánu výstupní funkci. Po zpracování vstupní posloupnosti automatem nás zajímá, v jakém vnitřním stavu se automat nachází tohoto modelu se využívá např. jako lexikálního analyzátoru v překladačích programovacích jazyků Autonomní automat nemá množinu vstupních písmen a přechody jsou definovány pouze „ze stavu do stavu“: Qt+1 = (Qt) takový automat může být modelem při návrhu autonomních čítačů Stochastický automat má definovány jednotlivé přechody pomocí pravděpodobnosti Fuzzy automat
Zobrazování automatů grafem přechodů a výstupů orientovaný graf uzly = stavy, hrany = přechody mezi stavy Mooreův automat ohodnocení hran: vstupy - podmínky přechodů ohodnocení uzlů: výstupy odpovídající stavům Mealyho automat ohodnocení hran: vstupy - podmínky přechodů a výstupy tabulkou přechodů a výstupů
Příklad Mooreův automat jde o zcela hypotetický automat, který není modelem konkrétního prvku (ale mohl by být) množiny X,Y,Q mají pouze symbolické prvky X={X1, X2}, Y={Y0, Y1, Y2}, Q={Q0, Q1, Q2}
Příklad Mealyho automat
Sekvenční zobrazení jiným modelem chování automatu je sekvenční zobrazení (zobrazuje vstupní posloupnost na výstupní posloupnost): vstupní posloupnost výstupní posloupnost
Podmínky sekvenčního zobrazení Sekvenční zobrazení musí: zachovat délku posloupnosti výstupní posloupnost má stejnou délku jako vstupní posloupnost zachovat počáteční podposloupnost mají-li dvě vstupní posloupnosti ξ1 a ξ2 shodnou počáteční (!) podposloupnost délky k > 0, musí být počáteční úseky alespoň délky k výstupních posloupností η1 a η2 stejné
A nyní konečně smysluplné a praktické příklady dva z oblasti hardware dva z oblasti software
Příklad 1 Navrhněte obvod, který zkracuje vstupní impuls libovolné délky na impuls v délce trvání jednoho hodinového taktu podle obrázku. jinak zapsáno: vstupní posloupnost: 0111101000001110 výstupní posloupnost: 0010000100000100
omezíme se pouze na tvorbu modelu obvodu - konečného automatu; budeme navrhovat Mooreův automat (návrhářská intuice) 1. Množiny vstupních a výstupních písmen jsou zřejmé: X = {0,1} Y = {0,1} 2. Množina vnitřních stavů a funkce a „vyplynou“ při konstrukci automatového modelu
počáteční vnitřní stav: Q0 1 Q1/1 Q0/0 1 Q2/0 1 Q = {Q0, Q1, Q2} počáteční vnitřní stav: Q0
Automat vyjádřený ve formě tabulky přechodů a výstupů 1 Q2 Q0 Q1 Y
pro zájemce: sekvenční logický obvod konstruovaný podle tohoto modelu má následující podobu: vnitřní stavy Q0, Q1, Q2 jsou zobrazeny dvojkovými čísly 00,01,10 (dvěma bity q1q0) a jsou uloženy v paměťových členech 74LS74 (klopných obvodech)
Příklad 2 Navrhněte automatový model řídicí jednotky, která řídí čerpání vody do rezervoáru. Rezervoár má tři senzory h2, h1 a h0. Voda se vypouští kohoutem, k naplnění slouží dvě čerpadla. Ponořený senzor dává na výstupu hodnotu 1, chod čerpadla se také spíná výstupem s hodnotou 1. Pokud je hladina nad senzorem h2 nebo klesne mezi senzory h2 a h1, voda se nedoplňuje. Jakmile klesne hladina pod úroveň h1, aktivuje se jedno čerpadlo a čerpá se jím, dokud není rezervoár doplněn. V případě velkého odtoku, kdy jedno čerpadlo nestačí a hladina klesne až pod úroveň h0, spouští se druhé čerpadlo a čerpá se oběma čerpadly až do naplnění nádoby nad senzor h2. Obě čerpadla zaručí větší přítok vody, než je odtok při plném otevření kohoutu. Pro jednoduchost neuvažujte při návrhu poruchy snímačů.
množina vstupních písmen X = {111, 011, 001, 000} (jednotlivé bity vstupního písmene představují stavy senzorů v pořadí h2, h1 a h0) množina výstupních písmen Y = {00, 01, 11}
Mooreův automat řídicí jednotky Mealyho automat řídicí jednotky
Příklad 3 Lexikální symboly v programovacích jazycích jsou konstanty, proměnné, operátory atd. V programovacím jazyce C je možné celočíselné konstanty zapsat v desítkové, osmičkové nebo šestnáctkové soustavě. Číslo zapsané v desítkové soustavě začíná cifrou 1 až 9, číslo zapsané v osmičkové soustavě začíná cifrou 0, číslo zapsané v šestnáctkové soustavě začíná 0x nebo 0X. Příklad: desítkově: 12, 25, 95 osmičkově: 05, 0123 šestnáctkově: 0x2F, 0X11 Navrhněte automatový model části lexikálního analyzátoru, který rozpozná, zda je číslo na vstupu zapsáno v desítkové, osmičkové nebo šestnáctkové soustavě.
navržený automat bude bez výstupní funkce; po zpracování vstupního čísla nás zajímá, ve kterém stavu automat končí; nejsou uvažovány chyby (doplňte sami příslušné stavy a přechody)
Příklad 4 Máme napsat program vypocet, který se spouští z příkazové řádky a má jeden povinný číselný parametr a dva nepovinné přepínače –p a –l. Přepínače mohou být zapsány různém pořadí, nemusí být přítomny vůbec. Za přepínačem –p následují povinně dvě desetinná čísla, první se uloží do proměnné a, druhé do proměnné b; za přepínačem –l následuje text – jméno souboru, který se uloží do proměnné soubor. Zároveň se do booleovské proměnné pp, resp. pl, zapíše, zda byl přítomen přepínač –p, resp. –l. Např: vypocet 20 –p 1.5 2 vypocet 5 –l text.txt vypocet 1 –l tisk.txt –p 10.5 4.5
Navrhněte automatový model té části programu, který bude zpracovávat nepovinné parametry příkazové řádky. Řešení: automat si bude ve vnitřním stavu uchovávat, zda očekává na vstupu přepínač, 1. nebo 2. číslo, či jméno souboru vstup budeme v modelu reprezentovat obecným popisem, např. číslo, text –p atd. výstup budeme reprezentovat v grafu přiřazovacími příkazy (popis akcí, které se mají provádět) budeme navrhovat Mealyho automat počáteční stav je Přepínač
„Za –l musí být jméno souboru“ Konec nic / - číslo / b=číslo Přepínač text –p /pp=true Číslo1 číslo / a=číslo Číslo2 text nebo nic /vypiš chybu „Za –p musí být číslo“ text –l / pl=true text / soubor=text jiný text /vypiš chybu „Očekávám přepínač –p nebo –l“ Soubor text nebo nic /vypiš chybu „Za –p musí být 2 čísla“ Chyba nic /vypiš chybu „Za –l musí být jméno souboru“
softwarově se konečný automat implementuje takto: vnitřní stav ukládáme do proměnné, zpravidla výčtového datového typu činnost automatu představuje cyklus s příkazem větvení v jeho těle nejprve se přepínáme podle stavů a pak podle vnitřních proměnných
stav = Prepinac; while(není konec) { case stav of Prepinac: if vstup=“-p” then begin stav=Cislo1; pp = true; end; if vstup=“-l” then begin stav=Soubor; pl = true; atd. Cislo1: if je_cislo(vstup)=true then begin Stav=Cislo2; a = cislo(vstup);
Ukázka v jazyce C i=2; // index prveho nepovinneho parametru stav = PREPINAC; // pocatecni stav while(i<argc && stav != CHYBA) { switch(stav) case PREPINAC: if(strcmp(argv[i],"-p")==0) {stav=CISLO1; pp=1;} else if(strcmp(argv[i],"-l")==0) { stav=SOUBOR; pl = 1; } else { printf("Po parametru pocet iteraci ocekavam " "prepinac -p nebo -l.\n"); stav = CHYBA; continue; } break; case CISLO1: if(sscanf(argv[i],"%f",&a)<1) printf("Po parametru –p musi byt cislo\n"); stav = CHYBA; continue; stav = CISLO2; break; case CISLO2: if(sscanf(argv[i],"%f",&b)<1) printf("Po param. –p musi byt dve cisla\n"); stav = CHYBA; continue; stav = PREPINAC; break; case SOUBOR: jmeno_souboru = argv[i]; stav = PREPINAC; break; i++; // posuv na dalsi parametr if (stav != PREPINAC || stav == CHYBA) printf("Neuplne zadane parametry u prepinacu.\n");