Opakování z minula. AO → MO → SD Kvantově chemický výpočet: 1)zvolíme vhodné atomové orbitály (tzv. bázi atomových orbitalů, basis set) 2)vypočítáme koeficienty.

Slides:



Advertisements
Podobné prezentace
Stavba atomu.
Advertisements

1 DFT a empirické modely interakcí v Monte Carlo simulacích klastrů molekul vody Lenka Ličmanová
Chemické reakce III. díl
Korelační metody (CCSD(T))
Shrnutí z minula. Spin Co to je? Jaké jsou vlastní funkce a vlastní hodnoty operátoru spinu pro elektron? Pauliho vylučovací princip spinorbitál.
Shrnutí pro zahrnutí Coulombické korelace je třeba dát možnost elektronům uniknout v prostoru = dát jim možnost obsadit jiné orbitály HF Slater determinant.
Shrnutí z minula.
Opakování z minula.
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
Jak se atomy spojují.
Chemická vazba.
Daniel Svozil Laboratoř informatiky a chemie FCHT
Elektronicky excitované stavy
6 Kvantové řešení atomu vodíku a atomů vodíkového typu
ELEKTRONOVÝ OBAL.
kovalentní koordinačně - kovalentní polarita vazby iontová vazba
Konstanty Gravitační konstanta Avogadrova konstanta
Radiální elektrostatické pole Coulombův zákon
Každý z nábojů na povrchu tvoří uzavřenou proudovou smyčku.
vlastnost elementárních částic
GYMNÁZIUM, VLAŠIM, TYLOVA 271
ČÁSTICOVÉ SLOŽENÍ LÁTEK
CHEMICKÁ VAZBA.
1 Registrovaná (detekovaná) intenzita Polarizační faktor  22  z =  /2-2   y =  /2 x z Nepolarizované záření.
TMF045 letní semestr 2005/2006 II Časová propagace vlnové funkce na mřížce I. (práce s momentovou reprezentací) (Lekce II)
Hartree-Fockova Metoda Kryštof Dibusz VŠCHT Praha FCHT – Aplikovaná Informatika v Chemii 4. ročník
Shrnutí z minula.
Variační princip existují různé funkce které splňují podmínky kladené na vlnovou funkci kvalitu těchto funkcí je možno posoudit na základě energií jim.
Nekovalentní interakce Mezimolekulové interakce
Difrakční integrál.
Geometrické uspořádání molekuly je charakterizováno:
Ab-inito teoretické výpočty pozitronových parametrů
Počítačová chemie (10. přednáška)
Obal atomu, uspořádání elektronů
Shrnutí z minula Heisenbergův princip neurčitosti
Bázové funkce. MO = Σc i AO množině AO se říká báze (basis set), z něj konstruujeme výsledné jednoelektronové MO STO vs. GTO.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Homogenní elektrostatické pole Jakou silou působí elektrické pole o napětí U = 100 V na elektron, je-li vzdálenost elektrod 1 cm? Jaké mu uděluje zrychlení?
Vypracoval: Jakub Višňák Vedoucí: Jiří Pittner ÚFCHJH
Kvantová čísla Dále uvedené vztahy se týkají situací se sféricky symetrickým potenciálem (Coulombův potenciálV těchto situacích lze současně měřit energii,
4.1 Elektronová struktura
Chemoinformatická úloha 2 - základní informace
KVANTOVÁNÍ ELEKTRONOVÝCH DRAH
Hartree-Fockova metoda. Opakování z minula AO → MO → SD Kvantově chemický výpočet: 1)zvolíme vhodné atomové orbitály (tzv. bázi atomových orbitalů, basis.
III. ATOM – ELEKTRONOVÝ OBAL
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Kvantová čísla Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Elektronová struktura atomů
FS kombinované Mezimolekulové síly
Homogenní elektrostatické pole Jakou silou působí elektrické pole o napětí U = 100 V na elektron, je-li vzdálenost elektrod 1 cm? Jaké mu uděluje zrychlení?
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
Struktura atomu a chemická vazba
Polovodič - měrný odpor Ω -1 m Ω -1 m -1 závisí na teplotě, na poruchách krystalové mříže koncentraci příměsí, na el. a mag. poli, na záření.
Monte Carlo simulace hexameru vody Autor: Bc. Lenka Ličmanová Vedoucí práce: Mgr. Aleš Vítek Seminář KFY PŘF OU.
Zákonitosti mikrosvěta
Elektronová konfigurace
Teorie funkcionálu hustoty (Density Functional Theory - DFT)
Stavba látek Základy elektrotechniky 1 Stavba látek Ing. Jaroslav Bernkopf.
5.4 Časově nezávislá Schrödingerova rovnice 5.5 Vlastnosti stacionární vlnové funkce 5.6 Řešení Schrödingerovy rovnice v jednoduchých případech Fyzika.
Jak se atomy spojují Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_41_11 Název materiáluAtomy s.
Mgr. Dagmar Muzikářová Gymnázium Brno, Elgartova 2016/2017
Elektronový obal atomu
Znázorňování orbitalů
Elektronový obal atomu
Typy vazeb.
Quantum Chemistry / Quantum Mechanics Many-Particle Problems
Excitovaný stav atomů Mgr. Dagmar Muzikářová Gymnázium Elgartova, Brno
Náboj a elektrické pole
Transkript prezentace:

Opakování z minula

AO → MO → SD Kvantově chemický výpočet: 1)zvolíme vhodné atomové orbitály (tzv. bázi atomových orbitalů, basis set) 2)vypočítáme koeficienty v MO = Σc i AO 3)zkonstruujeme výslednou vlnovou funkci z jednoelektronových MO jako Slaterův determinant

množině AO se říká báze (basis set), z něj konstruujeme výsledné jednoelektronové MO STO vs. GTO kvalita báze –minimální báze –double zeta (triple, quadruple) –split valence double zeta –polarizační funkce

split valence báze –dvojnásobný počet pouze valenčních orbitalů (3 s a 2 p pro C) polarizační funkce –první sada polarizačních fcí je nejdůležitější (p pro H, d pro těžké atomy)

Nový materiál

double zeta a polarizační –DZP –polarizační fce jsou ale jenom jednou –ano/ne na vodíky difuzní funkce –malé exponenty –hodně rozprostřeny –potřeba když volně vázané elektrony (např. anionty) vlastnost závisí na „chvostu“ funkce (polarizovatelnost)

Optimalizace bází míněno jak získám zeta exponenty s a p funkce – variační HF výpočty atomů, optimalizace energie polarizační fce jsou z definice neobsazené, proto není možno použít HF atomů –HF molekul –nebo korelační metody na atomech (vhodnější přístup)

Kontrakce bází mnoho bázových fcí je použito pro popis energeticky důležitého core regionu, který je ale nedůležitý chemicky zkonstantnit koeficienty před inner-core bázemi – už tedy nebudou v průběhu HF měněny kontrakce vždy zvýší energii, ale zredukuje výpočetní náročnost (10s4p1d/4s1p) → [3s2p1d/2s1p]

Poplovy báze STO-nG báze (minimální báze)

k-nlmG báze –split valence –k... kolik PGTO reprezentuje core orbitály –nlm... dvě čísla nl – double-valence, nlm – triple valence –hodnoty nlm udávají s- a p- fce v bázi, polarizační fce se píšou za G –omezení: s- a p- mají stejné exponenty !! –3-21G core je ze 3 PGTO valence je popsán dvěma orbitály, jedním ze dvou PGTO a dalším samotným PGTO

MO se konstruují jako lineární kombinace atomových orbitálů (MO LCAO) 3-21G báze Kolika bázovými funkcemi je popsán atom vodíku? Dvěma typu s. Kolika bázovými funkcemi je popsán atom uhlíku? Třemi typu s a dvěma typu p. vodík má 1 elektron, uhlík 6 elektronů

split-valence double zeta: ψ = c 1 1s‘ H +c 2 1s‘‘ H +c 3 1s‘ C +c 4 2s‘ C +c 5 2s‘‘ C +c 6 2p‘ C +c 7 2p‘‘ C 3-21G … vodík – 2 s, uhlík – 3 s a 2 p spinorbitaly

a nyní se podíváme na atomové orbitály, tedy s H, s C a p C AO jsou řešením atomu vodíku a jsou funkcí,, STO v praxi se však z výpočetních důvodů nepracuje přímo s STO, ale s GTO, které jsou funkcí ψ = c 1 1s‘ H +c 2 1s‘‘ H +c 3 1s‘ C +c 4 2s‘ C +c 5 2s‘‘ C +c 6 2p‘ C +c 7 2p‘‘ C

H 0 S S C 0 S SP SP G exponent koeficienty pro s koeficienty pro p

ψ = c 1 1s‘ H +c 2 1s‘‘ H +c 3 1s‘ C +c 4 2s‘ C +c 5 2s‘‘ C +c 6 2p‘ C +c 7 2p‘‘ C 1s‘ H = 2.1e e s‘‘ H = 1.0e s‘ C = 0.03e e e -10 2s‘ C = 0.002e e -4 2s‘‘ C = 1.0e -2 2p‘ C = 12e e -4 2p‘‘ C = 1.0e -2

exponent koeficienty pro skoeficienty pro p 6-31G báze pro C

difuzní fce s pro H, s a p pro těžké atomy + či ++ před G 6-31+G polarizační fce v závorce za G (těžký atom, vodík) G(2df,2pd) alternativně pro jednu sadu polarizačních fcí se používá *, **: 6-31+G* = 6-31+G(d)

6-31G pro uhlík 6-31+G* pro uhlík diffuse polarization exponent koeficienty pro s koeficienty pro p

Dunningovy cc báze cc... korelačně konzistentní optimalizované za použití korelované (CISD) funkce cc-pVXZ korelačně konzistentní valence polarizovaná X-zeta báze –cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z,... funkce jsou dodávány ve slupkách (shells) –cc-pVDZ pro C je 3s2p1d, cc-pVTZ je 4s3p2d1f

cc-pVDZ cc-pVTZ

konvergují k nekonečné bázi aug-cc-pVDZ znamená difuzní funkce dodané pro každý angulární moment přítomný v bázi (tedy např. s, p a d pro uhlík)

Báze prakticky větší = lepší –obvykle, třeba vybalancovat s použitou metodou, cc-pVQZ je overkill pro HF STO-3G nepoužívat difuzní fce pro anionty cc-pVDZ není vždy lepší než 6-31G(d,p), ale cc-pVTZ vždy lepší než 6-311G(d,p) Basis set exchange –

Variační princip existují různé funkce které splňují podmínky kladené na vlnovou funkci kvalitu těchto funkcí je možno posoudit na základě energií jim příslušejících čím nižší, tím lepší

Hartree-Fockova metoda

Hartree-Fock SCF herci na scéně

z determinantu a Hamiltoniánu sestrojíme N-elektronovou Schrödingerovu rovnici odvodíme Hartree-Fockovy rovnice N-el Schr. se rozpadá na N 1-el Fockových rovnic Fockián je „1-D Hamiltonián“, V i {j} je interakční potenciál mezi jedním elektronem a všemi ostatními (zprůměrováno) háček: Fockián obsahuje spinorbitaly, na které působí (neboť ρ=φ 2 )

elektrony se pohybují v potenciálu který samy vytvořily, mluvíme o self-konzistentním poli SCF M – počet bázových funkcí při řešení Fockových rovnic je tedy potřeba iterovat –volba počátečních MO - φ i –zkonstruuji z nich Fockián –vyřeším Fockovy rovnice, tak získám nové φ i –pokračuji až do dosažení konvergenčního kritéria

Čili výsledkem řešení HF rovnic jsou jednoelektronové molekulové vlnové funkce – MO Při velikosti báze M získám iterativním řešením Fockových rovnic M Hartree- Fockových orbitalů N energeticky nejníže ležících spinorbitalů obsadím elektrony a sestavím z nich Slaterův determinant –obsazené vs. virtuální orbitály

HF energie obsahuje tyto složky 1)kinetická energie elektronů 2)elektrostatické (Coulombovo) přitahování jader a elektronů 3)elektrostatická repulze elektronu od ostatních elektronů 4)výměnná energie neodpovídá žádné klasické síle, čistě kvantový původ exchange and correlation energy plyne z Pauliho vylučovacího principu, elektrony se stejným spinem nemohou okupovat stejnou část v prostoru (Fermiho díra)

konvergence SCF procesu ke stabilnímu řešení není zaručena oscilace SCF energie nebo ještě horší patologické neodhadnutelné změny v energii dva možné způsoby vyřešení problému: 1) matematicky extrapolace, damping, level shifting, DIIS

2)chemicky často je probémem iniciální odhad vlnové fce obvykle je snadnější dokonvergova HF v malé bázi než ve velké takže nejprve získat vlnovou fci v minimální bázi STO-3G pak ji použít jako odhad pro lepší bázi, atd. častým důvodem je i špatná geometrie – mezera mezi HOMO a LUMO (HOMO LUMO gap) je malá optimalizovat geometrii v malé bázi

HF prakticky E corr = E exact – E HF formálně škáluje jako M 4 v praxi je situace málokdy tak špatná, linear- scaling metody direct SCF – výpočet integrálů jak jsou potřeba je rychlejší než je ukládat na disk a později vybírat zpět molekulová symetrie – významné urychlení

BSSE basis set superposition error podstatný problém, výrazně vyšší interakční energie komplex je více stabilnější než monomery díky větší (flexibilnější) bázi counterpoise-correction (CP) by Boys, Bernardi, ghost atoms (G03: Counterpoise) deformační energie

CP BSSE přeceňuje v některých případech BSSE kompenzuje nekompletnost báze, nedělat !!! i optimalizace geometrie by měla být BSSE corrected v limitě nekonečné báze CBS vymizí některé metody mají nižší BSSE intramolekulární BSSE – CBS není jasné jak opravovat BSSE při výpočtu reakcí

Extrapolace k nekonečné bázi HF je variační metoda, řešení s nekonečnou bází se říká HF limita

CBS extrapolation (complete basis set limit) je potřeba použít konzistentní sadu bází (Dunningovy cc-pVnZ báze) z praktických důvodů se počítají dvě báze mnoho schémat, nejčastěji používané (Helgaker): v nekonečné bázi efektivně zrušíme BSSE

Hartre-Fock method (HF) Electron correlation Configuration Interaction (CI) Coupled Clusters (CC) Perturbation Theory (PT, MP) Semiempirical methods (NDO, AM1, PM3) Extended Hückel Theory Hückel MO Non-interacting electrons Additional approximation