Lomené algebraické výrazy

Slides:



Advertisements
Podobné prezentace
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Advertisements

Algebraické výrazy: lomené výrazy
Mocniny zlomků (základu – mocněnce ve tvaru zlomku)
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
FAKTORIÁL Ing. Martina Sedláková.
Zlomky Násobení zlomků..
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Algebraické výrazy: počítání s mnohočleny
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu www. rvp
Algebraické výrazy: lomené výrazy
Řešení lineárních rovnic s neznámou ve jmenovateli
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Zlomky a desetinná čísla.
Krácení a rozšiřování postupného poměru.
Rovnost, rozšiřování a krácení.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
VY_32_INOVACE_07/1/18_Číslo a proměnná
Pár užitečných rad, jak postupovat při převádění jednotek objemu.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
ZLOMKY 7. ROČNÍK ZÁKLADNÍ ŠKOLY
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Kvadratická rovnice Kvadratickou rovnicí s jednou neznámou x je každá rovnice tvaru: ax2 + bx + c = 0 kvadratický člen absolutní člen lineární člen Dostupné.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Hodnota proměnné Příprava na lomené výrazy
Jak postupovat při převádění jednotek délky.
VY_32_INOVACE_07/1/17_Číslo a proměnná
FAKTORIÁL Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Lenka Pláničková. Dostupné z Metodického portálu ISSN: ,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Pár užitečných rad, jak postupovat při převádění jednotek obsahu
Rozklad mnohočlenů na součin
Krácení lomených výrazů.
Rozklad čísel 6 – 10 – doplňování varianta A
Dělení lomených výrazů
Kvadratická rovnice.
Rozklad mnohočlenů na součin
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Lomené algebraické výrazy
Dostupné z Metodického portálu www. rvp
Lomené algebraické výrazy
Hodnota proměnné Příprava na lomené výrazy
I. Podmínky existence výrazu
Lomené algebraické výrazy
Hodnota proměnné Příprava na lomené výrazy
Lomené algebraické výrazy
Nerovnice v podílovém tvaru
Lomené algebraické výrazy
Lomené algebraické výrazy
Rozklad mnohočlenů na součin
Rozklad čísel od 1 do 10 Dostupné z Metodického portálu ISSN:  , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Lomené algebraické výrazy
Lomené algebraické výrazy
Algebraické výrazy: lomené výrazy
Transkript prezentace:

Lomené algebraické výrazy Krácení lomených výrazů

Krácení lomených výrazů. S pojmem krácení jsme se seznámili již při početních operacích se zlomky. Krácení znamená dělení čitatele i jmenovatele stejným číslem, různým od nuly. Podobně postupujeme i u lomených výrazů. Krátit lomený výraz znamená vydělit čitatele i jmenovatele stejným výrazem, různým od nuly.

Krácení lomených výrazů. Tak tedy ještě jednou. Kraťte lomený výraz: U lomených výrazů nesmíte nikdy zapomenout na určení podmínek řešitelnosti (kdy má výraz smysl)! Je dobré s nimi proto začínat. Při krácení dochází k dělení. A jak již dlouho víme, nelze dělit nulou. Proto podobně jako výraz ve jmenovateli, který nesmí být roven nule, nesmí být roven nule ani výraz, kterým při krácení lomeného výrazu dělíme!

Krácení lomených výrazů. Jak zjistíme výraz, kterým při krácení dělit? Výraz, kterým se krátí? Podíváme se ještě jednou na předcházející příklad, ale využijeme při tom znalosti rozkladu výrazu na součin. nebo Zjistili jsme, že: A tato rovnost platí, je-li:

Krácení lomených výrazů. Z řešení předcházejícího příkladu je zřejmé, že abychom mohli krátit, musíme rozložit výrazy v čitateli i jmenovateli lomeného výrazu na součin v základním tvaru. Můžeme vytknout číslo 2 Jak je vidět, tak ze součinového tvaru určíme mnohem snadněji i podmínky, pro které má výraz smysl. Vzorec Můžeme vytknout člen 2x Lomený výraz má tedy smysl, pokud se x ≠ 0 a x ≠ -4. Za tohoto předpokladu můžeme krátit výrazem x+4, jelikož máme zajištěno, že není nulový (nulou nelze dělit!).

Krácení lomených výrazů. Můžeme tedy krátit výrazem x+4, jelikož máme zajištěno, že není nulový (nulou nelze dělit!). A samozřejmě vykrátit můžeme i číslo 2. Zjistili jsme, že a tato rovnost platí, je-li

Využijeme komutativního zákona pro záměnu činitelů a sčítanců Krácení lomených výrazů. Celý postup krácení si projdeme ještě jednou na jiném příkladu: Nejdříve rozložíme výraz do součinového tvaru. Vytkneme člen 2x Vytkneme číslo (-1) Využijeme komutativního zákona pro záměnu činitelů a sčítanců Vytkneme člen 3x2 Rovnost mezi daným a upraveným výrazem platí, je-li x ≠ 0 a x ≠ y.

Krácení lomených výrazů – příklady k procvičení. Kraťte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Krácení lomených výrazů – příklady k procvičení. Kraťte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Krácení lomených výrazů – příklady k procvičení. Kraťte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Krácení lomených výrazů – příklady k procvičení. Kraťte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Krácení lomených výrazů – příklady k procvičení. Kraťte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Krácení lomených výrazů – příklady k procvičení. Kraťte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Krácení lomených výrazů – příklady k procvičení. Kraťte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Test A na závěr vyzkoušej, jak ti to jde. (http://www.zshorakhk.cz/tvorba/ucitele/LV/LV_kraceni.php)