ANORGANICKÁ POJIVA - VÁPNO

Slides:



Advertisements
Podobné prezentace
LEHKÉ BETONY.
Advertisements

KAMENIVO SPŠ stavební, České Budějovice.
Stavební pojiva. Stavební pojiva Vápník Poměrně měkký, lehký, reaktivní kov. Vápník patří k lepším vodičům elektrického proudu a tepla. Vápník je velmi.
POJIVA Mají schopnost spojovat drobné i větší kusy hmoty v soudržný a pevný celek Chemická - vzdušná ( vápno, sádra ) - hydraulická (hydraulické vápno,
Cement je hydraulické pojivo k výrobě malty a betonu.
Výzkumný ústav stavebních hmot, a. s.
Malty a maltové směsi.
Tvorba vzorců a názvů oxidů- procvičování
PORCELÁN A KERAMIKA.
Významné soli Mgr. Helena Roubalová
VY_32_INOVACE_02 - OCH - POJIVA
Sádra Vzdušné pojivo.
Při výrobě železa se využívají také redoxní reakce
Žáruvzdorné materiály a výrobky
Typy chemických reakcí
Významné oxidy Mgr. Helena Roubalová
ANORGANICKÁ POJIVA - SÁDRA.
Stavebnictví Pozemní stavby Výroba vápna(STA25) Ing. Naděžda Bártová.
Výpočty z chemických rovnic
Pálení porcelánových výrobků.
SOLI VE STAVEBNICTVÍ.
Hydroxidy (zásady) nazývané též žíravé louhy, obsahují kov a charakteristickou hydroxidovou skupinu – OH, hydroxidový aniont = OH oxidační číslo hydroxidu.
Kovy alkalických zemin
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: NÁZEV:VY_32_INOVACE_104_Výroba vápna AUTOR: Igor Dubovan ROČNÍK, DATUM: 9., 15.
Oxidy CZ.1.07/1.4.00/ VY_32_INOVACE_2306_CH8 Masarykova základní škola Zásada, okres Jablonec nad Nisou Mgr. Eva Živná, 2011.
Anotace Prezentace určená k opakování a procvičování učiva o hydroxidech  Autor Ing. Lenka Kalinová Jazyk Čeština Očekávaný výstup Žák porovná vlastnosti.
Hliník Stříbrolesklý měkký kov III.A skupiny Vodič tepla, elektřiny
Oxidy důležité pro stavebníky a malíře
Zásady Učební materiál vznikl v rámci projektu INFORMACE – INSPIRACE – INOVACE, který je spolufinancován Evropským sociálním fondem a státním rozpočtem.
PRKVY II.A SKUPINY Kovy alkalických zemin Be - kov Mg - kov Ca - kov
Sloučeniny H y d r o x i d y RZ –
Autoři: Ing. Dominik Gazdič Prof. Ing. Marcela Fridrichová, CSc.
Vápno pro speciální účely - měkce pálené
Střední odborné učiliště Liběchov Boží Voda Liběchov
Kyslík.
Oxidy, které ovlivňují životní prostředí. Co známe z kapitoly Názvosloví organických sloučenin 1 Úkol 1: Doplň text: Oxidy jsou ……….. sloučeniny kyslíku.
SOLI Stavební materiály
Ch_005_Hydroxid vápenatý
Autor výukového materiálu: Petra Majerčáková Datum vytvoření výukového materiálu: květen 2013 Ročník, pro který je výukový materiál určen: VIII Vzdělávací.
Lepení dřeva Teorie lepení
Hydroxidy Jan Kolarczyk, Vojtěch Havel. Obecně Sloučeniny hydroxylového aniontu OH- s kovovým kationtem. Sloučeniny hydroxylového aniontu OH- s kovovým.
Oxidy.
Oxidy 1 Oxidy, které ovlivňují životní prostředí Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR.
Oxidy důležité pro stavebníky, malíře a jako drahokamy
Zástupci oxidů RZ
Vybrané příklady průmyslově významných hydroxidů
Naše půda ZŠ Sokolovská 1 Svitavy.
Klepnutím lze upravit styl předlohy podnadpisů Název šablony: Inovace v přírodopisu 52/ch17/ , Vrtišková Vzdělávací oblast: Člověk a.
Chemické reakce a výpočty Přírodovědný seminář – chemie 9. ročník ZŠ Benešov,Jiráskova 888 Ing. Bc. Jitka Moosová.
Název školy Střední škola stavební a dřevozpracující, Ostrava, příspěvková organizace Autor Ing. Marie Varadyová Datum: duben 2012 Předmět: Zkoušení stavebních.
Sanace fasád Omítky a malty Jiří Vrbík Autorizovaný stavitel.
Číslo projektuCZ.1.07/1.5.00/ Číslo materiáluVY_32_INOVACE_24-16 Název školy Střední průmyslová škola stavební, Resslova 2, České Budějovice AutorRobert.
Nejvýznamnější oxidy Autor: Mgr. Iveta Studená Název školy ZÁKLADNÍ ŠKOLA, JIČÍN, HUSOVA 170 Číslo projektu CZ.1.07/1.4.00/ Číslo a název klíčové.
ZÁKLADNÍ ŠKOLA SLOVAN, KROMĚŘÍŽ, PŘÍSPĚVKOVÁ ORGANIZACE ZEYEROVA 3354, KROMĚŘÍŽ projekt v rámci vzdělávacího programu VZDĚLÁNÍ PRO KONKURENCESCHOPNOST.
Sklo, keramika, stavební pojiva. Sklo Vzniká roztavením a opětovným ztuhnutím nerostných surovin Nemá pravidelnou krystalovou strukturu = je amorfní Pevný.
Název školy Střední škola stavební a dřevozpracující, Ostrava, příspěvková organizace Autor Ing. Marie Varadyová Datum: duben 2012 Předmět: Zkoušení stavebních.
Základní škola T. G. Masaryka, Bojkovice, okres Uherské Hradiště
Výukový materiál zpracován v rámci projektu
VY_32_INOVACE_615 Název školy příspěvková organizace Autor
ŘEMESLO - TRADICE A BUDOUCNOST
Název projektu: ZŠ Háj ve Slezsku – Modernizujeme školu
Číslo projektu CZ.1.07/1.4.00/ Název sady materiálů Chemie 8. roč.
Název školy: Základní škola a Mateřská škola Kladno, Norská 2633
Zásady.
Výukový materiál zpracován v rámci projektu
Výukový materiál zpracován v rámci projektu
Stabilizace vápnem Lime Stabilization
Název školy: ZŠ Varnsdorf, Edisonova 2821, okres Děčín, příspěvková organizace Člověk a příroda, Chemie, Významné oxidy Autor: Ing. Světlana Hřibalová.
Hydroxidy Mária Lukačinová.
Významné oxidy Oxid uhličitý CO2 nedýchatelný bezbarvý plyn
Transkript prezentace:

ANORGANICKÁ POJIVA - VÁPNO

Pojiva - vápno Vzdušné vápno Vzdušné vápno je typickým představitelem vzdušných pojiv a zároveň patří k nejdéle používaným pojivům vůbec. Technicky vzato je vápno názvem pro oxid vápenatý (CaO) s různým podílem oxidu hořečnatého (MgO), vyráběný pálením čistých nebo dolomitických vápenců pod mez slinutí, tj. na teploty 1000 – 1250 oC.

Podle obsahu MgO se vzdušné vápno dělí na: Pojiva - vápno Podle obsahu MgO se vzdušné vápno dělí na: vápno vzdušné bílé s obsahem MgO pod 7 % dolomitické vzdušné vápno s obsahem MgO nad 7 %

Pojiva - vápno Historie výroby vápna Vápno je používáno již od starověku. První nálezy vápenných pojiv pocházejí ze staveb, nacházejících se na území dnešní Sýrie, které jsou datovány do doby zhruba 7000 let př. n.l. Na našem území se vápno začalo používat od přelomu 10. a 11. století

Pojiva - vápno Výroba vzdušného vápna Vzdušné vápno se vyrábí pálením vhodně upravených surovin – vápenců nebo dolomitických vápenců v různých typech pecí při teplotách 1000 až 1250 oC. Výpalem vzniká pálené vápno (nehašené), které je tvořeno převážně oxidem vápenatým (CaO), vzniklým dekarbonatizací vápence (uhličitanu vápenatého, CaCO3).

Pojiva - vápno Proces dekarbonatizace vápence popisuje jednoduchá chemické rovnice: CaCO3 CaO + CO2 teplo uhličitan vápenatý vápenatý oxid uhličitý oxid Při úplném rozkladu CaCO3 vznikne ze 100 kg CaCO3 56 kg CaO a 44 kg CO2. Dekarbonatizace uhličitanu vápenatého začíná již od 600 oC. Vyšší teplota používaná ve výrobních zařízeních zajišťuje, že výrobní proces probíhá dostatečně rychle.

Pojiva - vápno Dekarbonatizace uhličitanu hořečnato-vápenatého (dolomitu) probíhá podle velmi podobné rovnice: CaCO3 . MgCO3 CaO + MgO + CO2 teplo hořečnato - vápenatý uhličitan oxid hořečnatý

kusové nepálené vápno - vápenec Pojiva - vápno mleté pálené vápno kusové nepálené vápno - vápenec

Pojiva - vápno   Platí, že s vyšší teplotou a vyšší rychlostí výpalu vzrůstá podíl méně reaktivní struktury a výsledný produkt je označován jako tvrdě pálené vápno, vhodné pro výrobu autoklávovaného pórobetonu, např. výrobky typu YTONG. Měkce pálená vápna, vhodná pro výrobu malt a omítek, naopak vznikají výpalem při nižších teplotách, jsou reaktivnější, pórovitější a vykazují nižší objemovou hmotnost, větší měrný povrch a vyšší aktivitu a vydatnost než vápna tvrdě pálená.

Pojiva - vápno Pro výpal vápence a výrobu páleného vápna se u nás v současnosti používají kontinuálně pracující šachtové pece.

Pojiva - vápno Historicky se vápno vyrábělo často poměrně jednoduchým způsobem, a to např.: - v jamách, jejichž stěny byly obloženy kamenem, který nepodléhal tepelnému rozkladu a které byly uzavřeny „víkem“ z větví, omazaných jílem,

- v nálevkovitých pecích - v milířích - v kruhových pecích - v jamách Pojiva - vápno - v komorových pecích - v nálevkovitých pecích - v milířích - v kruhových pecích - v jamách vápenka v Teplicích nad Bečvou

Pojiva - vápno Práce u kruhové pece

Starý způsob pálení vápence v zemní jámě Pojiva - vápno Starý způsob pálení vápence v zemní jámě Pacoldova šachtová pec

Vápenka ve Velké Chuchli Pojiva - vápno Vápenka ve Velké Chuchli

tzv. za sucha nebo za mokra. Pojiva - vápno Druhou částí výroby vápna je hašení vápna. Hašením se pálené vápno převádí na hydroxid vápenatý – Ca(OH)2. Proces hašení probíhá za silného vývinu tepla a je provázen nabýváním vápna na objemu. Hašení je možno provádět tzv. za sucha nebo za mokra. Špatným vyhašením lze i velmi kvalitní pálené vápno znehodnotit.

Proces hašení se dá vyjádřit chemickou rovnicí: Pojiva - vápno Proces hašení se dá vyjádřit chemickou rovnicí:   CaO + H2O Ca(OH)2+ teplo hydroxid vápenatý   Mokré hašení se provádělo přímo na stavbách a spočívá ve skrápění vrstvy páleného vápna vodou v ploché, otevřené nádobě zvané hasnice (karb). Teplota hašeného vápna nesmí dosáhnout 100 oC a hašení se provádí za přebytku vody (240 až 320 litrů vody na 100 kg páleného vápna). Při hašení se musejí dodržovat přísná bezpečnostní opatření. Takto vyhašené vápno - vápenná kaše se nechá před použitím určitou dobu odležet. V současnosti se za mokra hasí vápno jen ve vápenkách a vápenná kaše se prodává v různých spotřebitelských baleních zejména pro nátěry stěn.

Svépomocné hašení vápna v improvizovaných podmínkách Pojiva - vápno Malospotřebitelské balení hašeného vápna Svépomocné hašení vápna v improvizovaných podmínkách

Pojiva - vápno Suché hašení se uskutečňuje ve speciálním mísícím zařízení přímo ve vápence. Provádí se s malým přebytkem vody (60 až 70 litrů na 100 kg páleného vápna). Při hydrataci se přebytečná voda účinkem tepla odpaří a výsledným produktem je práškovitý vápenný hydrát (hydroxid vápenatý). Vápenný hydrát je skladovatelný až 6 měsíců a v okamžiku potřeby se z něj připraví vápenná kaše přidáním potřebného množství vody. Pro stavební účely se vápenný hydrát může používat přímo jen do malt pro zdění, pro jiné účely se musí také nechat odležet.

Ca(OH)2 + CO2 + n H2O CaCO3 + (n-1) H2O Pojiva - vápno Tuhnutí vápenné kaše (malty) je vyvoláno odpařováním přítomné vody a z tohoto důvodu malta vyrobená ze vzdušného vápna pod vodou vůbec netuhne. Hlavním procesem při tvrdnutí vápenné malty je karbonatizace (uhličitanové tvrdnutí). Ke karbonatizaci dochází působením vzdušného oxidu uhličitého podle rovnice:   Ca(OH)2 + CO2 + n H2O CaCO3 + (n-1) H2O Karbonatizace vyžaduje přítomnost alespoň malého množství vody v tvrdnoucí maltě a vzhledem k nízké koncentraci CO2 ve vzduchu (0,03 obj. %) probíhá jen velmi pomalu.

Pojiva - vápno Hydraulické vápno   Hydraulické vápno je pojivo připravené buď pálením vápenců, dolomitických vápenců nebo vápnitých slínů a slínovců (hornin s přírodním obsahem hydraulických součástí) pod mez slinutí, tedy na maximální teplotu 1250 oC nebo společným semletím vzdušného vápna s vhodnými přísadami, obsahujícími hydraulické oxidy (tzv. umělé hydraulické vápno).

Hydraulické vápno musí obsahovat minimálně Pojiva - vápno Hydraulické vápno musí obsahovat minimálně 10 % hydraulických složek (SiO2, Al2O3, Fe2O3), podle jejichž obsahu se hydraulická vápna dělí na:   slabě hydraulická s obsahem 10 až 15 % hydraulitů a s minimální pevností po 28 dnech 1,5 MPa, - silně hydraulická, která obsahují nad 15 % hydraulických složek a vykazují minimální pevnost 4 MPa po 28 dnech.

Výroba hydraulického vápna je obdobná jako u vzdušného vápna. Pojiva - vápno Výroba hydraulického vápna je obdobná jako u vzdušného vápna. Poněvadž slabě hydraulická vápna mohou obsahovat značné množství volného CaO, mohou se hasit za sucha, tj. s malým množstvím vody (asi 0,1 – 0,25 kg vody na 1 kg slabě hydraulického vápna). Silně hydraulická vápna se před mletím nehasí, neboť se svojí hydraulicitou již blíží cementům a po přidání vody by zatvrdla.

Pojiva - vápno Hydraulická vápna se v minulosti používala zejména pro výrobu malt nebo omítek. Z hlediska vlastností v sobě kombinují vlastnosti vzdušného vápna a cementu – oproti vápenným omítkám se vyznačují větší odolností vůči povětrnostním vlivům a tedy vyšší životností, naopak vůči cementům si zachovávají základní vlastnost vápen - plasticitu. V České republice se v současnosti hydraulická vápna nevyrábějí. To činí komplikace zejména v památkové péči, protože v minulosti používaná vápenná pojiva měla vždy větší či menší příměs hydraulických složek. Hydraulické vápno pro rekonstrukci památkových lze tedy zajistit dovozem ze zahraničí.

Pojiva - vápno při hašení vápna

Pojiva - vápno